Decentralised Coordination of Mobile Sensors for Monitoring Dynamic Environments

Ruben Stranders, Alex Rogers, Nicholas R. Jennings

School of Electronics & Computer Science
University of Southampton

ATSN 2008
An online \textit{coordination mechanism} for a \textit{team} of autonomous \textit{mobile sensors} monitoring \textit{environmental phenomena}, e.g.

- Temperature
- Humidity
- Gas concentration
- Radiation
Outline

1 Motivation

2 Challenge

3 The Algorithm
 - Challenge 1: Information Processing
 - Challenge 2: Information Value
 - Challenge 3: Control

4 Demo & Evaluation

5 Conclusion & Future Work
Outline

1 Motivation

2 Challenge

3 The Algorithm
 - Challenge 1: Information Processing
 - Challenge 2: Information Value
 - Challenge 3: Control

4 Demo & Evaluation

5 Conclusion & Future Work
Motivation

Improve situational awareness in dynamic scenarios

- Disaster Response
- Military Surveillance
- Agriculture
Requirements

- Coordination of multiple sensors
- Online learning of environmental properties
- Decentralised action planning
- Recover both spatial and spatial correlations
Related Work

- Fixed sensor deployment
 - Offline, centralised
 - Spatial correlations only
- Mobile robotics
 - Pre-planning, centralised, single robot
 - Emphasis on localisation, mapping, tracking
Our Contribution

- Coordination Mechanism of Mobile Sensors
 - Online path planning
 - Online learning
 - Decentralised
 - Spatial and temporal correlations
Outline

1. Motivation

2. Challenge
 - Challenge 1: Information Processing
 - Challenge 2: Information Value
 - Challenge 3: Control

3. The Algorithm

4. Demo & Evaluation

5. Conclusion & Future Work

Ruben Stranders, Alex Rogers, Nicholas R. Jennings
Central Challenge

How to move multiple mobile sensors to recover and predict the state of the phenomenon?

Three central questions:
1. How to *model* the phenomenon?
2. How to *value* individual samples?
3. How to *coordinate* to maximise value?
How to move multiple mobile sensors to recover and predict the state of the phenomenon?

Three central questions:

1. How to *model* the phenomenon?
2. How to *value* individual samples?
3. How to *coordinate* to maximise value?
Central Challenge

How to move multiple mobile sensors to recover and predict the state of the phenomenon?

Three central questions:

1. How to *model* the phenomenon?
2. How to *value* individual samples?
3. How to *coordinate* to maximise value?
Central Challenge

How to move multiple mobile sensors to recover and predict the state of the phenomenon?

Three central questions:

1. How to *model* the phenomenon?
2. How to *value* individual samples?
3. How to *coordinate* to maximise value?
Central Challenge

How to move multiple mobile sensors to recover and predict the state of the phenomenon?

Three central questions:

1. How to \textit{model} the phenomenon?
2. How to \textit{value} individual samples?
3. How to \textit{coordinate} to maximise value?
Example Environment
Example Phenomenon
Outline

1 Motivation

2 Challenge

3 The Algorithm
 - Challenge 1: Information Processing
 - Challenge 2: Information Value
 - Challenge 3: Control

4 Demo & Evaluation

5 Conclusion & Future Work
Overview of the Algorithm

1. Take Measurements, Communicate and Process Information
2. Value of Information
3. Information-Based Control
Properties

- Online
- Decentralised
- Multi-Sensor
- Model Based
Information Processing

- Gaussian Process (GP): Bayesian regression over functions
 - Predict missing values (interpolate)
 - Predict future values (extrapolate)
GP Example
GP Example
GP Example
GP Example
GP Example
GP Example
Gaussian Process

- Covariance Function (CF) determines high level properties of process
 - Periodicity
 - Smoothness
 - Rate of change
 - Noise levels of environment and sensors
- *Hyperparameters* determine the strength of these properties
Hyperparameters: Long lengthscale

Ruben Stranders, Alex Rogers, Nicholas R. Jennings
Decentralised Coordination of Mobile Sensors
Hyperparameters: Short lengthscale
Hyperparameters: Long timescale
Hyperparameters: Short timescale
Learn Hyperparameters

- Bayesian approach: marginalise out hyperparameters
- Bayesian Monte-Carlo: efficient numerical quadrature
Challenge 2: Valuing Information

- Intuition: obtain observations that minimise uncertainty
- Mathematical formalisation of uncertainty: Entropy
 \[H(X) = - \int p(x) \log(p(x)) dx \]
- Closed form formula exists for Gaussian process
Valuing Information

How to minimise entropy (and thus uncertainty) in the environment?

1. Move sensors to positions with high entropy: maximise Entropy

2. Move sensors to positions at which their presence reduces uncertainty in the rest of the environment the most: maximise Mutual Information (I):

 $$ I(X; Y) = H(X) - H(X|Y) $$
Valuing Information

1. Maximise Entropy
 - Simple
 - Fixed sensors tend to be placed at the edges of the environment

2. Maximise Mutual Information
 - Computationally expensive
 - Fixed sensors tend to be placed more centrally (Guestrin 2005)
Valuing Information

![Diagram showing valuing information with different symbols and numbers on a grid.]

Ruben Stranders, Alex Rogers, Nicholas R. Jennings

Decentralised Coordination of Mobile Sensors
Different experimental results for mobile sensors:

No significant difference in performance between Mutual Information and Entropy.
Challenge 3: Information-Based Control

Goal
Minimise Entropy in the environment

Simple Decision Rule
Move in the direction of steepest Entropy gradient

Resulting Behaviour
Myopic Entropy maximisation
Challenge 3: Information-Based Control
Outline

1 Motivation

2 Challenge

3 The Algorithm
 - Challenge 1: Information Processing
 - Challenge 2: Information Value
 - Challenge 3: Control

4 Demo & Evaluation

5 Conclusion & Future Work
Emergent Properties

- “Chase out” uncertainty
- Implicit coordination & task allocation
Demo
Empirical Results

Simulated six policies using a real dataset from Intel Berkeley Labs

- **DCMC** Decentralised Coordination of Mobile Sensors (Our algorithm)
- **Random** Sensors that move randomly
- **A Priori** Sensors that know the hyperparameters in advance
- **Jump** Sensors that can “jump” to any desired location and know the hyperparameters
- **Fixed H** Fixed sensors that are deployed using the entropy criterion
- **Fixed MI** Fixed sensors that are deployed using the MI criterion
Empirical Results

Key metric: Root Mean Squared Error (RMSE) averaged over time

$$RMSE = \frac{\sum_{v \in V} (Predicted_v - Actual_v)^2}{|V|}$$

where:

- V: set of important locations in the environment
- $Predicted_v$: Predicted value at location v
- $Actual_v$: Actual value at location v
Empirical Results

![Graph showing average RMSE for different scenarios.]

1. DCMC
2. Random
3. A Priori
4. Jump
5. Fixed H
6. Fixed MI
Conclusion

- Coordination Mechanism for Mobile Sensors in dynamic environments
 - Modeling: Gaussian processes
 - Information Valuing: Entropy
 - Control: Myopic value maximisation
- Implicit coordination through observation sharing
- Interesting emergent properties
Future Work

- Towards more realistic environments
- Explicit cooperation
- Reason about paths