
INFORMATIK
Berichte

295 – 8/2002

Proceedings of the
International Workshop on
Open Hypermedia Systems

Core Concepts & Research Directions
Pre-Conference Workshop at

the ACM 13th International Conference on
Hypertext and Hypermedia (HT’02)

University of Maryland, College Park, MD 20742, USA
June 12th, 2002

David Millard, Jörg M. Haake, Sigi Reich (Eds.)

FernUniversität

Fachbereich Informatik
Postfach 940

D-58084 Hagen

Proceedings of the
International Workshop on
Open Hypermedia Systems

Core Concepts & Research Directions
Pre-Conference Workshop at

the ACM 13th International Conference on
Hypertext and Hypermedia (HT’02)

University of Maryland, College Park, MD 20742, USA
June 12th, 2002

David Millard, Jörg M. Haake, Sigi Reich (Eds.)

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 3

Organizers

David Millard Department of Electronics & Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK, dem@ecs.soton.ac.uk

Jörg M. Haake FernUniversität Hagen Computer Science VI, Informatikzentrum,
Universitätsstrasse 1, 58084 Hagen, Germany, joerg.haake@fernuni-hagen.de

Sigi Reich Salzburg Research (SunTREC), Jakob Haringer Str. 5/III, 5020 Salzburg,
Austria, sreich@salzburgresearch.at

David Millard is a Research Fellow in the Intelligence, Agents and Multimedia Group at the
University of Southampton. He has participated in the Open Hypermedia Workshops and
Working Group meetings since 1997, where he was a key contributor to the OHP suite of
protocols and the development of the Fundamental Open Hypermedia Model (FOHM).

Jörg Haake is professor for distributed systems at FernUniversität Hagen, the German distance
learning university. He is actively participating in Hypertext conferences since 1991 and is
engaged in OHS workshops since 1996, where his primary work is on collaborative open
hypermedia systems.

Sigi Reich is the head of SunTREC (Sun Technology and Research Excellence Center) at
Salzburg Research, Austria. He has participated in the Open Hypermedia Workshops and
Working Group meetings since 1996. Over the last few years Sigi Reich has been involved in
aspects of interoperability of Open Hypermedia Systems, in particular the development of the
Open Hypermedia Navigational Interface (OHP-Nav) and the Fundamental Open Hypermedia
Model (FOHM).

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 4

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 5

Table of Contents

Session 1 : Linking and Structure
XLink—Linking the Web and Open Hypermedia 9

Bent Guldbjerg Christensen and Frank Allan Hansen, University of Aarhus

Goate: An infrastructure for new Web linking 19
Duncan Martin and Helen Ashman, University of Nottingham

Beyond the Traditional Domains of Hypermedia 26
David E. Millard, Danius T. Michaelides, David De Roure, Mark J. Weal,
University of Southampton

Asynchronous Linking in a Service-Oriented Architecture 33
Sanjay M. Vivekanandan, Kenneth K. K. Tso, Mark K. Thompson, David C. De Roure,
University of Southampton

Session 2 : Open Infrastructure
Securing a Open Hypermedia System (OHS) Using MQSeries Everyplace (MQe) 40

David C. De Roure1, Kenneth K. K. Tso1, Howard Lambert2,
1University of Southampton, 2IBM United Kingdom Ltd

Arguments for Open Structure Execution Service 45
Jessica Rubart1, Weigang Wang1, Jörg M. Haake2,
1Fraunhofer Institute for Integrated Publication and Information Systems (IPSI),
2FernUniversität Hagen

Workflow Description for Open Hypermedia Systems 52
Sanjay M. Vivekanandan, David C. De Roure, University of Southampton

 Session 3 : Lessons learned and Future Work
OHS: Lessons learned and Future Work .. 58

Jörg M. Haake1, David E. Millard 2,
1FernUniversität Hagen, 2University of Southampton

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 6

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 7

Session 1: Linking and Structure

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 8

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 9

XLink—Linking the Web and Open Hypermedia
Bent Guldbjerg Christensen and Frank Allan Hansen
Department of Computer Science, University of Aarhus

Åbogade 34, DK-8200 Aarhus N, Denmark
Email: {bentor, fah}@daimi.au.dk

Abstract
This paper considers the use of XLink as a linking mechanism for both the Web and for open
hypermedia systems. We present a comparison between the open hypermedia interchange format
(OHIF) and XLink and describe a XLink implementation based on this comparison. Finally, we
discuss whether XLink can bridge the waters between the Web and open hypermedia systems.

Keywords
XLink, OHIF, open hypermedia systems, World Wide Web

INTRODUCTION
The World Wide Web (Web) is by far the most widely known and successful hypermedia system
of today. It is used in almost every imaginable area from publishing to entertainment and trading.
The success of the Web is probably due to its simple but extendable architecture. Web servers
can be extended with CGI programs which allows for dynamically generated documents and
Web browsers can be scripted with e.g. JavaScript or extended with various plug-ins and
components. This flexibility makes the Web an ideal platform for many applications.

The success of the Web has also resulted in the Web browser becoming a core part of almost any
computing environment from desktop computers to PDAs and advanced cellular phones. This
has the great advantage that the browser is ready at hand—to use the Web there is no need to
install an extra application (which is often the case with other hypermedia systems).

But even though the Web is a versatile system it has a lot of shortcomings compared to other
open hypermedia systems (OHSs) especially in the areas of hypermedia model, link- and
structuring mechanisms and support for collaborative work.

With respect to link mechanisms the Web only supports very simple links. Links can only
address whole documents and predefined anchors in the documents which makes finer grained
linking impossible. Furthermore, both links and anchors are defined in-line in the documents so
only the owner of a document can make links from the document. As a result the use of the Web
is for most users a read-only experience. It also makes it hard for groups of people to share links
or have different collections of links attached to the same set of documents. The links supported
by the Web are in essence simple go-tos. There is no support for more powerful relations such as
bidirectional links, multi-headed links, or external out-of-line links. This lack of advanced link-
and structuring mechanisms illustrates an area where the Web falls short compared to many
OHSs.

The gap between the ubiquitous Web and OHSs has been discussed before [13], and work has
been done to bridge the gap. One approach chosen by OHSs such as The Distributed Link
Service [4], DHM [9], Chimera [1], Webvise [11], and Arakne [3] is to augment the Web with
extra hypermedia functionality and thus provide the user of the Web with more powerful linking
and structuring mechanisms. With this approach the Web is just treated as another client of the
OHS. However, it has the disadvantage of introducing a new system component which is not a
standard part of most computing environments in contrast to the Web browser.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 10

Work is also being done in the Web community to improve the Web from within. The XLink
recommendation from W3C [7] specifies a new linking mechanism for the Web which supports
both the simple links used on the Web today, as well as more sophisticated links. However, we
have found very few implementations that actually use XLink. It also appears that very little
work has been done in investigating the qualities of XLink as a linking mechanism for the Web
and its potential as linking mechanism for other systems e.g. OHSs (a preliminary investigation
of XLink as an export format for Chimera was done by Halsey and Anderson in [12]).

In the remainder of this paper we will discuss our work with XLink as a linking format for the
Web and for an OHS. We will describe our implementation of a set of XSLT stylesheets which
in a very simple way makes it possible to do transformations between interchange files generated
by the WebNize1000 OHS (a commercially available descendant of the Webvise [11] OHS) and
XLink. The goal of our work is to investigate whether the use of XLink on the Web will reduce
the gap described above and whether XLink is suitable as a linking format for OHSs. If the latter
is the case XLink could be a great candidate for a common link format and thus increase the
interoperability between OHSs and the Web.

LINKING IN OPEN HYPERMEDIA SYSTEMS
Our investigation is of a comparative nature. We started out with an analysis of the data format
used by the WebNize1000 OHS. WebNize supports bidirectional, multi-headed, span-to-span
links which can be labeled with a name or description. It also supports global links which are
similar to the generic links in Microcosm [6]. Furthermore, the system supports annotation of
documents (or spans in a document) and the notion of Guided Tours which are trails of links
trough a set of documents. These elements are collected in a hypermedia context that is
superimposed upon the documents by the system. With this format we feel we have a solid base
for comparing the features of XLink with those of OHSs.

THE OHIF FORMAT
The open hypermedia interchange format (OHIF) [10] was introduced together with the
applications Webvise [11] and Arakne [3]. To define the OHIF format an XML DTD1 was
derived from the OHSWG navigational data model [8]. The key elements of the OHIF format are
described shortly below, so a comparison with the transformed XLink version is possible.

• ohif:node
2: The ohif:node element is the fundamental hypermedia data object of

OHIF. An ohif:node corresponds to a document and contains the URL to it.

• ohif:anchor: An ohif:anchor element points out the location in an ohif:node's
content which is source or destination of a link. ohif:anchor elements contains a
location specifier (locSpec) typical pointing to a text selection with a regular expression
(a so called simpleLoc). ohif:annotations are implemented as ohif:anchors with a
presentation specifier that describes the type (popup, replace, insert after, insert before)
and the text of the annotation.

• ohif:endpoint: An ohif:endpoint refers to an ohif:anchor and holds a presentation
specification (PSpec) which describes how the destination endpoint should be presented.

1 http://www.daimi.au.dk/~les/ohif/ohif.dtd
2 To distinguish OHIF elements from XLink elements their names are prefixed with a XML
namespace.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 11

ohif:endpoints also contains a direction attribute which defines whether the endpoint is
source, destination, or both.

• ohif:link: The ohif:link element contains a collection of ohif:endpoint references.

• ohif:guidedtour: An ohif:guidedtour represents a graph of ohif:nodes and consists
of two collections, one with ohif:vertex ids and one with ohif:edge ids. An
ohif:vertex element refers to a hypermedia object, typical an ohif:node. The
ohif:edge element holds the ids for the source and the destination ohif:vertex of the
ohif:edge and PSpec for the graphical presentation.

These are the fundamental elements of the OHIF format that are converted into a XLink based
structure.

XLINK
The XLink recommendation [7] describes a XML based linking format. XLink allows the
expression of: multi-headed links, out-of-line links, and to associate meta data with a link. These
are all well-known features of many open hypermedia systems, but what makes XLink special is
that it is already a W3C standard.

XLink was originally designed to be the linking standard for XML documents and therefore has
some XML specific properties, but the standard does not dictate how XLink elements should be
used. The XLink elements can be used in several ways and with various perspectives. A XLink
structure can be applied in-line to an existing XML data structure with the use of attributes
inserted directly into the data elements. Used this way the linking information is considered a
property of the data. The XLink structure can also be applied to the XML data by creating new
XML elements that would only contain the linking information. In this way the XLink
information is treated as first class data elements. A third and more interesting approach is to
create a separate XML document that contains all of the linking information (a linkbase). All the
links is thus out-of-line and the original data is not changed in any way.

The XLink standard uses ordinary URI references to specify locations. When a more fine grained
locSpec is wanted the URIs can be extended with a XPointer expression to identify URI
fragments. The XPointer language [5] was constructed to support addressing into XML
documents, but can be used for non XML data as well. A XPointer expression can be build up of
sub expressions which are evaluated left to right until one of them succeeds. This fallback
mechanism supports a fragment to be specified in several different ways to increase the chances
of finding it. The expressions can include the use of functions defined by the XPointer standard
in runtime calculations. Among these functions are a collection of simple string functions that we
use to simulate the regular expressions used in OHIF based locSpecs.

FROM OHS STRUCTURES TO XLINK
Our goal was to create a direct mapping between an OHIF file and a XLink linkbase. Therefore,
we created mappings for each of the key OHIF elements described earlier. These mappings are
presented below.

An ohif:anchor element and the ohif:node element that is used by the ohif:anchor are
transformed to a XLink locator element named xlink:loc. The xlink:loc element keeps the
URL from the ohif:node element and extends it with a XPointer expression that corresponds to
the ohif:anchor locSpec.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 12

The two ohif:endpoint elements that constitute a relation between two ohif:anchors are
merged into one XLink arc element named xlink:arc. A xlink:arc element has two attributes
from and to which hold references to the xlink:loc elements corresponding to the original
ohif:anchors. The xlink:arc element can also contain PSpec information of how the
destination of the link should be presented e.g. replacing the current view, a popup, or an in-line
include.

Links
The ohif:link element is mapped to an element with the XLink type set to extended. The new
xlink:link contains xlink:arc elements corresponding to ohif:endpoints and xlink:loc
elements used by the xlink:arcs. This link structure is depicted in figure 1.

LINK

+type = extended
title
id

ARC
+type = arc
title
from
to

LOC
+type = locator
title
label
+href

1

**

1 1

*
*

Figure 1: The structure of a xlink:link element. A xlink:link element can contain xlink:locs that
each specifies a location with a XPointer extended URI. The xlink:arc elements connects the

xlink:locs to form links.

The OHIF format supports the notion of global links. This can be expressed as a special variant
of the xlink:link at figure 1. The only difference is that the xlink:loc elements which specify
a source of a global link should only contain a XPointer expression and not the whole URI.

An ohif:link structure describing bi-directional links between two locations is listed in
example 1. The corresponding xlink:link is listed in example 2. Notice that the xlink:arcs do
not have an attribute named to. This is a shorthand for setting the to attribute to every
xlink:loc element defined inside the current xlink:link element.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 13

Example 1: A two-headed bi-directional ohif:link.

<LINK id="daimi.4.1017075150" name="Link 4">

<ENDPOINTIDSET>

<ID>daimi.7.1017075150</ID><ID>daimi.24.1017079993</ID>

</ENDPOINTIDSET>

</LINK>

<ENDPOINT id="daimi.7.1017075150" name="AARHUS"

linkid="daimi.4.1017075150" anchorid="daimi.6.1017075150" direction="BIDIRECTIONAL" >

<PSPECIDSET><ID>daimi.5.1017075150</ID></PSPECIDSET>

</ENDPOINT>

<ANCHOR id="daimi.6.1017075150" parentid="daimi.3.1017075150">

<SIMPLELOC occurrence="1" > <SELECTION>AARHUS</SELECTION>

<SELECTIONCONTEXT>UNIVERSITY OF AARHUS</SELECTIONCONTEXT>

</SIMPLELOC>

</ANCHOR>

<NODE id="daimi.3.1017075150" name="Welcome to Computer Science in Aarhus (DAIMI)">

<CONTENTSPEC version="" mimetype="application/WWWAddress" >

<PROPERTIES>

<PROPERTY name="docTitle" type="System" flags="0">

<VALUESET><VALUE>Welcome to Computer Science in Aarhus (DAIMI)</VALUE></VALUESET>

</PROPERTY>

</PROPERTIES>

<URL>http://www.daimi.au.dk/</URL>

</CONTENTSPEC>

</NODE>

<ENDPOINT id="daimi.24.1017079993" name="Department" linkid="daimi.4.1017075150"

anchorid="daimi.23.1017079993" direction="BIDIRECTIONAL" >

<PSPECIDSET><ID>daimi.22.1017079993</ID></PSPECIDSET>

</ENDPOINT>

<ANCHOR id="daimi.23.1017079993" parentid="daimi.21.1017079993">

<SIMPLELOC occurrence="1" > <SELECTION>Department</SELECTION>

<SELECTIONCONTEXT>About the Department</SELECTIONCONTEXT>

</SIMPLELOC>

</ANCHOR>

<NODE id="daimi.21.1017079993" name="About the Department">

<CONTENTSPEC version="" mimetype="application/WWWAddress" >

<PROPERTIES>

<PROPERTY name="docTitle" type="System" flags="0">

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 14

<VALUESET>

<VALUE>About the Department</VALUE></VALUESET>

</PROPERTY>

</PROPERTIES>

<URL>http://www.daimi.au.dk/doc74.html</URL>

</CONTENTSPEC>

</NODE>

Example 2: A two-headed bi-directional xlink:link. This xlink:link corresponds to
the ohif:link in example 1.

<LINK xlink:type="extended" xlink:title="Link 4" xlink:id="daimi.4.1017075150">

<ARC xlink:type="arc" xlink:title="AARHUS" xlink:from="daimi.6.1017075150"/>

<LOC xlink:type="locator" xlink:label="daimi.6.1017075150"

xlink:href="http://www.daimi.au.dk/#xpointer(string-range(/,"UNIVERSITY OFAARHUS",15,6)[1])"

xlink:title="Welcome to Computer Science in Aarhus (DAIMI)"/>

<ARC xlink:type="arc" xlink:title="Department" xlink:from="daimi.23.1017079993"/>

<LOC xlink:type="locator" xlink:label="daimi.23.1017079993"

xlink:href="http://www.daimi.au.dk/doc74.html#xpointer(string-range(/,"About the\

Department",11,10)[1])"

xlink:title="About the Department"/>

</LINK>

Annotations
An annotation in OHIF is implemented as PSpecs to an ohif:anchor. In the XLink version an
annotation is represented as a special case of the general link structure from figure 1. The
information of the annotation is contained in the element named xlink:annotation which has
the XLink type extended. The xlink:annotation element always contains the three elements:
xlink:loc, xlink:arc, and xlink:note. The xlink:loc element holds the presentation
location of the annotation with a XPointer extended URI. The xlink:note element contains the
actual annotation text. The xlink:loc and the xlink:note elements are connected with the
xlink:arc element which also describes how the annotation should be presented. The structure
of a XLink annotation is presented in figure 2.

ANNOTATION
+type = extended

ARC
+type = arc
show
from
to

LOC
+type = locator
label

+href

NOTE
+type = resource
label

1 1

1

1 1 1

1 1

Figure 2: The structure of a xlink:annotation. The xlink:loc element specifies where the

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 15

annotation should be presented. The actual annotation is contained in the xlink:note element. The
xlink:arc element describes how the annotation should be presented.

Guided Tours
The ohif:guidedtour represents a graph of nodes. This is mapped into XLink structures with a
xlink:loc element for each ohif:vertex and a xlink:arc element for each ohif:edge. The
ohif:guidedtour includes PSpecs for both ohif:vertex and ohif:edge elements
(coordinates, color, size, ...). These are preserved as sub elements of both the xlink:loc and
xlink:arc elements. The structure of a xlink:guidedtour can be seen in figure 3. Notice how
the structure of the xlink:guidedtour is very similar to that of a xlink:link.

GUIDEDTOUR
+type = extended
name
id
startVertex

ARC
+type = arc
id
from
to

LOC
+type = locator
label

+href

COLOR lineThickness SIZE

1

* *

1

1

1

1

Figure 3: The structure of a xlink:guidedtour.

XSPECT—A SIMPLE IMPLEMENTATION OF XLINK
Our implementation, the Xspect system3, consists of a set of XSLT stylesheets which realize the
transformation between OHIF and XLink linkbases. We have also created stylesheets that
transform the XLink linkbases into a HTML and JavaScript representation that can be used
directly in standard Web browsers. The transformation system is illustrated in figure 4.

XSLT OHIF XLink XSLT

Annotation
System

SVG
+

JavaScript

HTML
+

JavaScript

Runtime system
for XLink linkbase

Runtime system
and Guided Tour
graph

Creation of
XLink annotations

Figure 4: The Xspect systems transformation architecture.

3 A demo of the system can be found on the URL:
http://www.daimi.au.dk/~fah/xspect/start.html

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 16

Furthermore, the transformation system is closed in that transformation from XLink to OHIF is
supported. This indicates a structural equivalence between the two formats.

We use the XSLT stylesheets in two implementations: a client only version implemented in
Microsoft's Internet Explorer and a CGI server version.

The client version uses Microsoft's XSLT processor to translate the OHIF contexts into XLink
and further into HTML and JavaScript that is displayed in the browser. JavaScript is used to
implement the runtime representations of the XLink linkbase and to decorate documents with
anchors and link- and annotation dialogs.

The server version uses a Python based XSLT processor to do the same transformation as
mentioned above. The server also handles decoration of documents by altering the HTML code,
so this is not done in JavaScript as in the client version. Furthermore, the server implements
transformation from XLink to SVG which is used to display the Guided Tours as interactive
metromaps. The metromaps are scripted with JavaScript to make them function similarly to the
metromaps in the WebNize OHS.

Besides these transformations we have also implemented an annotation system in the client
version. The annotation system allows users to select a span of text in a HTML document and
annotate it. The annotation is then inserted in a global annotation XLink linkbase that can be
used by the Xspect system or transformed to OHIF and used by WebNize. A session in the
Xspect system is illustrated in figure 5.

Figure 5: A session in the Xspect system. The left window displays a complete context with a
Guided Tour, links, and annotations. The right window displays a document decorated with link-
and annotation anchors. The user has activated a link and the corresponding link dialog is open.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 17

DISCUSSION AND FUTURE WORK
We are now ready to discuss our expriences with XLink. First of all, is XLink a suitable link
mechanism for the Web? We definitely think so! XLink offers vast improvements over the
simple links used on the Web today. With respect to linking, XLink brings the Web much closer
to other OHSs. However, only a limited number of applications natively supports XLink at the
moment (the Amaya browser from W3C and the Mozilla browser implement simple links, but
not extended links). If XLink is to be the linking mechanism for the next generation Web we will
have to see more complete support for XLink and also more widespread support in other
mainstream applications.

Can XLink be used as linking mechanisms in OHSs? We have succeeded in implementing a
direct mapping from OHIF to XLink so in this case XLink is a suitable format. The biggest
difference between the two formats is that OHIF uses a referential organization of its elements
while elements in XLink are organized into aggregated structures. In our implementation we did
not find this to be a problem. Another important point to note is that XLink is not just for linking
XML. As an example, the Xspect system is used to link HTML documents. Our use of text based
XPointer expressions makes it possible to address the exact same things that are addressable by
the OHIF simpleLocs. Furthermore, XPointer is especially suited for the format of the fragment
identifiers used whitin the URI references when XML documents are being linked, but the
XLink specification does not require locators to be XPointer based. Thus, when linking none
XML documents it is possible to employ other types of fragment identifiers suitable for the
specific document type.

Finally, can the adoption of XLink be part of the bridge between OHSs and the Web? As
discussed above we think XLink is suitable for linking in both the Web and in OHSs.
Furthermore, the Xspect system is an example of an implementation where XLink is used as an
interchange format between the structures of OHIF and the structures of a Web application. We
find such an approach important in the effort of bridging the gap between OHSs and the Web.
However, this approach also raises some issues. As described earlier, XLink can be applied to
data in a variety of ways: both as attributes of the data and also as first class data elements. If
XLink is to be used as a middleware format between OHSs and the Web we need to agree on a
way to do this. We would suggest a catalog of best practices or a collection of design patterns on
how XLink can be applied to applications in a way suitable for both Web- and OHS applications.
We think that such a catalog could be useful for both the open hypermedia community and the
Web community and it would also provide some examples of the use of XLink which are
seriously lacking at the moment.

In our work with XLink linkbases issues regarding the support of collaborative work and
scalability were considered. Both issues could possibly be overcome by fragmenting linkbases
into appropriate chunks. These linkbase parts should be of a size convenient for locking
mechanisms like WebDAV [14]. Fragmentation would also support the structuring of massive
link information creating the notion of cascading linkbases. The XLink recommendation
specifies a fragmentation mechanism that probably could be used. This is an area we intend to
investigate further.

CONCLUSION
We think that XLink holds great promise—both as a higher level linking mechanism for the next
generation Web but also as linking mechanism for other applications.

But before we will see this happening there are some issues that remain to be solved. The Xspect
system uses XSLT transformations to convert XLink linkbases to HTML and JavaScript that can
be accessed by conventional browsers. This approach proved to be both simple and powerful but

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 18

on a larger scale this method is cumbersome. If XLink is to be widely accepted and used, we
need native support in mainstream applications (e.g. browsers and editors). We also see the need
of some common guidelines on how to employ XLink since this can be done in a variety of
different ways. This is important if XLink indeed is to become the standard way of linking.

ACKNOWLEDGEMENT
We would like to thank Niels Olof Bouvin for his good advise and comments on improving
earlier versions of this paper.

Bibliography
[1] Kenneth M. Anderson. Integrating open hypermedia systems with the World Wide Web. In

Bernstein et al. [2], pages 157-166.
[2] Mark Bernstein, Leslie Carr, and Kasper Østerbye, editors. Proceedings of the 8 ACM

Hypertext Conference, Southampton, UK, April 1997.
[3] Niels Olof Bouvin. Unifying strategies for Web augmentation. In Tochtermann et al. [15],

pages 91-100.
[4] Leslie A. Carr, David De Roure, Wendy Hall, and Gary Hill. The distributed link service: A

tool for publishers, authors and readers. In Proceedings of the 4 International World Wide
Web Conference, Boston, USA, December 1995.

[5] Ron Daniel, Steve DeRose, and Eve Maler (editors). XML Pointer Language (XPointer).
W3C candidate recommendation, W3C, September 2001.http://www.w3.org/TR/xptr.

[6] Hugh C. Davis, Simon Knight, and Wendy Hall. Light hypermedia link services: A study of
third party integration. In Proceedings of the 1994 ACM European conference on
Hypermedia technology, pages 41-50, Edinburgh, UK, September 1994.

[7] Steve DeRose, Eve Maler, David Orchard, and Ben Trafford (editors). XML Linking
Language (XLink). W3c recommendation, W3C, June 2001.http://www.w3.org/TR/xlink/.

[8] Kaj Grønbæk. OHS interoperability—issues beyond the protocol. In Proceedings of OHS
Workshop 4.0 held at Hypertext '98, Pittsburgh, June 20-24, 1998.

[9] Kaj Grønbæk, Niels Olof Bouvin, and Lennert Sloth. Designing Dexter-based hypermedia
services for the World Wide Web. In Bernstein et al. [2], pages 146-156.

[10] Kaj Grønbæk, Lennert Sloth, and Niels Olof Bouvin. Open hypermedia as user controlled
meta data for the Web. In Proceedings of the 9 International World Wide Web Conference,
pages 553-566, Amsterdam, Holland, May 2000.

[11] Kaj Grønbæk, Lennert Sloth, and Peter Ørbæk. Webvise: browser and proxy support for
open hypermedia structuring mechanisms of the World Wide Web. In Proceedings of the 8
International World Wide Web Conference, pages 253-267, Toronto, Canada, May 1999.

[12] Brent Halsey and Kenneth M. Anderson. XLink and open hypermedia systems: A
preliminary investigation. In Proceedings of the 11 ACM Hypertext Conference, pages 212-
213, San Antonio, TX USA, May 2000.

[13] Peter John Nürnberg and Helen Ashman. What was the question? reconciling open
hypermedia and world wide web research. In Tochtermann et al. [15], pages 83-90.

[14] Greg Stein. Webdav resources. http://www.webdav.org/.
[15] Klaus Tochtermann, Jörg Westbomke, Uffe K. Wiil, and John J. Leggett, editors.

Proceedings of the 10 ACM Hypertext Conference, Darmstadt, Germany, February 1999.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 19

Goate: An infrastructure for new Web linking

Duncan Martin1 & Helen Ashman2
1University of Nottingham

Jubilee Campus
Nottingham

+44 115 8451158
djm@cs.nott.ac.uk

2University of Nottingham

Jubilee Campus
Nottingham

+44 115 9514237
hla@cs.nott.ac.uk

Abstract
In this paper, we introduce a client-platform independent mechanism for implementing new
linking standards.

The paper defines the terms low-level and high-level in relation to linking languages, and
discusses how HTML, a low-level language, can be used as a basis for high-level linking.

We also describe Goate, a HTTP proxy that allows high-level linking to be used with ordinary
HTML browsers, first taking a high-level overview of Goate and then discussing implementation
details.

Introduction
The adoption of any new standard is dependant on the availability of compatible client software.
Considering the Web specifically, adoption of a new standard requires the support of the authors
of browser software, and even presuming this is forthcoming, as a public system there is no
guarantee of the level of client software in use.

It is issues such as these that cause substantive ‘lag’ on new standard adoption and also preclude
diversity of link specification methods in use.

This paper introduces a system to address these issues and allow the implementation of new
linking languages for every browser.

The problem
If we want to take advantage of standards such as XLink[1], we have a problem since current
Web browsers at best only have early support for XML. In terms of universal support we only
have access to HTML, which lags XLink in terms of three key abilities; bi-directional links, n-
ary links and flexible destination specification (i.e. the ability for the source link to specify where
in the destination should be navigated to, XPointer[2] is an example of this).

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 20

However, XLink has the advantage of being a standard well supported by the computing industry
and browser support is emerging. Now, suppose we look beyond XLink to linking based around
ideas such as conceptual linking, a model that allowed links to be written in an arbitrary program
language such as C or Java or other bespoke languages. Many of these future languages will not
enjoy the wide industry support that XML & XLink has.

One solution to the browser manufacturers not supporting a new language could be to produce
browser plug-ins. However, if we wanted our new linking language to be universally adopted
we would have to produce (and maintain) a plug-in for every browsing platform in common use
(where a browsing platform is a combination of Web browser and operating system) and
frequently plug-in based approaches end up only supporting one or maybe two browsing
platforms.

As an alternative to the plug-in approach, we intend to provide the three key abilities listed above
whilst presenting only HTML (along with support languages such as CSS and JavaScript) to the
browser, as part of a solution that allows the implementation of new linking languages whilst
retaining full browser compatibility.

Solution theory
Our solution is based on the principle that all that is needed to support high-level linking is a
capable display markup language and a low-level linking language.
Low-level linking
We define a ‘low-level’ linking as the ability to move from one page to another, the ability to
specify the point in the destination page to which we wish to navigate and the ability to create
links in the destination document. HTML has caveats in terms of the second and third of these
abilities in that the in-page destination point must be pre-declared by the author of the destination
document, and links can only be added to the destination document by the author of that
document.

The term low-level is used to draw a parallel with programming languages. A low-level
programming language (e.g. assembly) lacks many of the features of a high-level programming
language (e.g. Java), yet it is capable of performing all the same tasks – albeit not with the same
amount of effort from the programmer.

We complete the analogy by considering XLink (and future specifications) to be ‘high-level’
linking languages, as they allow link specification in a format tied closer to the concept desired.

If a linking language meets all of the criteria above it is a ‘complete low-level linking language’,
whilst if it has shortcomings this will affect the range of languages that can be built upon it. For
example, if the low-level language only allows in-page pointers to words rather than characters
the high-level languages based upon it will also only allow in-page pointers to words.

Emulating high-level linking
We previously mentioned three key abilities present in XLink that are not in HTML; bi-
directional links, n-ary links and flexible destination specification. If we treat these abilities as
being a core requirement for a future (high-level) linking languages then they need to be
modelled in HTML. The binary relationship linking model[8] shows that a uni-directional one-
to-one link can be used as a basis for more complex linking, and we expand on this idea slightly
with the following statements:

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 21

• A bi-directional link is equivalent to two uni-directional links that point at each other.

• n-ary links are equivalent to a collection of uni-directional links that share a common
source point.

• Flexible destination specification can be emulated by placing a fixed in-page anchor at
the desired point in the destination document, and navigating to this fixed anchor.

The key issues regarding this model are access and maintenance. We previously mentioned the
caveats in considering HTML a low-level linking language restrictions which now becomes
relevant since if we are to emulate flexible destination specification and back-links in HTML we
need access to be able to write to the destination document. The maintenance issue is regarding
bi-directional links, and ensuring that both uni-directional links remain ‘in-sync’ with each other.

The system we are implementing (named Goate[11]) handles these issues transparently, so that
implementation of high-level languages remains in the high-level domain.

Working without access
The requirement to be able to write to the destination document isn't entirely accurate. A more
precise requirement is: “the system needs to be able to alter the HTML as seen by the browser”,
and therefore writing to the copy ‘on-disc’ isn’t necessary. Given that we can't expect to have
write access to an arbitrary server on the Internet, it makes sense to intercept and alter the
documents as they are delivered.

The dominant transmission protocol for documents on the Web is HTTP. There already exist
HTTP proxies that act as relays for HTTP requests; that is clients send requests for pages to the
proxy which then requests the document from the server. The reply from the server is sent to the
proxy and from there to the client. Proxies are usually used for network infrastructure reasons
(such as caching and controlled access to the Internet) and pass content verbatim, although it is
possible for them to alter content as it passes through[5][7].

Systems based on this principle already exist, e.g. DLS[4][8] and Webvise[3] although they
differ from Goate in that they aim to use the browser as one viewer in a larger hypertext system,
the proxy being one method of adding links to documents. Goate is a purely proxy-only solution,
focused on being high-level linking to the browser.

Presentation
Underlining as a visual cue for linking is not without problems, as discussed in “The look of the
link”[9]. Goate, following recommendations made in “The look of the link” and uses
background shading to identify links, with different colours distinguishing between single versus
multi-headed links, and forward versus backward links. Goate uses light blue for a single
forwards link, grey for a single backwards link and orange for any multi-headed link, values
which are currently fixed although ultimately the user will be able to customise the visual
appearance.

For multi-headed links a pop-up box is displayed when the mouse pointer passes over the link.
The pop-up lists available destinations, again using background shading to show which are
forward links and which are backwards. An example of the pop-up box with two forward links,
is shown below:

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 22

For browsing-platforms that do not support the required Javascript and CSS to display the pop-
up, a text-only representation is used instead.

Browser compatibility
Browser compatibility is one of the core aims of the project, since we do not believe the Web is
best when restricted to a handful of browsing platforms. Working with HTML (and support)
instead of plug-ins helps us in this regard as although implementations of JavaScript can vary
between browsers, these differences are small when compared to those between two plug-in
programming models.

Additionally, functioning as a proxy gives the system knowledge about which browsing-platform
is being used as this information is sent as part of the User-Agent line in the HTTP request
header, allowing the proxy to respond with HTML tweaked for that particular platform. The
following browsers are fully supported by Goate: Internet Explorer 4+, Netscape 4.7 & 6.2+,
Mozilla 0.99+, Opera 5+ and Konqueror 3+. We believe this set of browsers allows us to claim
comprehensive cross-platform support, but more importantly allows the user to work with their
preferred platform.

Implementation
This section goes into more depth about how the proxy functions, the stages of link translation
and how language modules are used.

Basic structure
Goate itself is written in plain C (i.e. not C++) and is being developed under OpenBSD, although
it is known to work under FreeBSD and we do not expect conversion to other UNIX variants to
be difficult.

The proxy doesn't run as a single process, rather on startup n copies of the proxy automatically
forked off. Each one of these child processes waits for incoming connections and handles them
appropriately. Each child process connects to the Goate PostgreSQL[10] database which is used
to store details about links, as will be explained in more detail later. Although PostgreSQL is
used, no PosgreSQL specific features are as the demands of the database only extend as far as
simple queries and inserts/deletes.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 23

Document retrieval
When an incoming connection to Goate is made, the request is parsed and then passed on to the
remote server (that is, the server holding the file requested). Non-HTML types returned are
passed through directly, whilst HTML documents are processed as described below.

The browser name (e.g. Netscape) and version can be detected from the request and this
information is stored for later use.

Parsing
The HTML document is parsed into an internal ‘xmlDoc’ format. A xmlDoc consists of a
number of xmlItems where a xmlItem is either a section of plain text, a comment or an element
(a further type; ‘link’ is explained later).

The parser takes cues from both SGML (HTML) and XML parsers. A presumption is made that
the document should be valid XML (in terms of well-formedness) and so the parser supports
self-closing elements, e.g. <something />. However, unlike most XML parsers, Goate is
tolerant of mistakes such as stray angle brackets and attribute values missing quotes etc. Syntax
mistakes such as these are corrected at parse time4, whilst well-formedness mistakes are
corrected at the next stage.

Well-formedness correction
Many linking languages rely on the document tree being well-formed, that is, every opening tag
has a closing tag and tags are closed in the opposite order to which they are opened. Goate
therefore corrects documents to be well-formed, adding and deleting tags as appropriate to make
the document valid XML. The algorithm used corrects nesting errors (tags closed out of order),
missing closing tags and extra closing tags.

Link translation
At this stage of the process, the document is now well-formed and the links embedded in it need
to be translated into the internal Goate format.

The translation is done by the language modules available to the system. A language module is
not part of Goate itself but a distinct piece of code linked into the system at run-time, similar to
the way a browser plug-in is not part of the browser but interfaces with it, the principle of this is
approach being that implementing linking languages should not be restricted to the authors of
Goate but should be possible for any interested party.

Each language module in turn scans the xmlDoc looking for elements that it recognises as links.
On finding one, the module is responsible for evaluating the link and translating it into the
following form: destination page, destination start, destination end and directionality.

The start/end combination refers to the position of the link within the destination page. Note that
this pair doesn't have to obey tree discipline so linking to ‘white sheep’ in:

Beware fluffy white sheep

4 More accurately, some mistakes are corrected (angle brackets in text sections not using the
> notation for example) whilst others such as missing quotes around attribute values are
ignored, since the quotes aren't stored as part of the xmlItem structure anyway.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 24

with a single pair is valid even though a single closing element is caught within that range.

The ‘directionality’ attribute of the link simply refers to the link being uni-directional or bi-
directional.

Once the language module has completed the evaluation of the link, it calls an API function with
the details. In the case where the link has many destinations, the API call is made repeatedly.
The element in the xmlDoc that contains this link has a flag set to show that a language module
has successfully processed it.

When all language modules have completed their scan, Goate deletes elements shown as being
successfully processed links.

Link insertion
When the language modules called the insert link method from the API, an entry was made in
the link table of the Goate database5.

Retrieving links that need to be displayed for this page is now simply a task of performing a
SELECT on the database for the current page. This will retrieve not only links that have their
source on the page, but the backwards part of bi-directional links sourced on other pages.

The links are inserted into the xmlDoc as ‘link’ type xmlItems. Since these items may be added
in places that break the tree, the well-formedness corrector is run again to bring the tree back to a
valid state.

Link rendering and transmission
The final stage of processing is to scan the document and convert the link-xmlItems to HTML
code. The precise code output is dependent on the browser type detected during the request
stage. Where links end up being nested a multi-headed link is rendered.

Whether single or multi-headed, the links here still rely on the HTML <a href> method.
Therefore we cannot navigate to an arbitrary position in the destination document, only a point
pre-declared with an <a name> anchor which will not exist for the links we're creating. We
solve this problem by making the source link point to an in-page anchor we presume will exist
(e.g. href="somepage#goate123"). When the user clicks on the link and Goate is
processing ‘somepage’, it will add the destination anchor (named goate123 in our example) at
the appropriate point as part of the link insertion procedure, allowing the browser to navigate to
that point.

Acknowledgments
This work is supported by the EPSRC – Grant number 20164

References
[1] XLink specification. http://www.w3c.org/TR/xlink/
[2] XPointer specification. http://www.w3c.org/TR/xptr/

5 In the case of a bi-directional link, two entries were added to the link table: one for each direction.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 25

[3] Grønback, K., L. Sloth Ørbæk, P. Webvise: browser and proxy support for open hypermedia
structuring mechanisms of the World Wide Web. Proceedings of the 8th International World
Wide Web Conference. 1999.

[4] Carr, L.A., DeRoure, D., Hall, W. and Hill, G. The distributed link service: A tool for
publishers, authors and readers. Proceedings of the 4th International World Wide Web
Conference. 1995.

[5] Brooks, C., Mazer, M.S., Meeks, S. and Miller, J. Application-Specific Proxy Servers as
HTTP Stream Transducers. Proceedings of the 4th International World Wide Web
Conference. 1995.

[6] Ashman, H. Relation modelling sets of hypermedia links and navigation. Computer Journal
43. OUP 2000.

[7] Barrett, R. and Maglio, P.P. Intermediaries: new places for producing and manipulating Web
content. Proceedings of the 7th International World Wide Web Conference. 1998.

[8] De Roure, D., El-Beltagy, S., Carr, L. and Hall, W. A Distributed Link Service using Query
Routing. Poster session of the 8th International World Wide Web Conference. 1999.
http://www.ecs.soton.ac.uk/~dder/qdls/

[9] Weinreich, H., Obendorf, H. and Lamersdorf, W. The look of the link – Concepts for the user
interface of extended hyperlinks. Proceedings of ACM Hypertext 01. 2001

[10] http://www.postgresql.org
[11] Martin, D. and Ashman, H. Goate: XLink and beyond. Proceedings of ACM Hypertext 02.

2002.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 26

Beyond the Traditional Domains of Hypermedia

David E. Millard, Danius T. Michaelides, David De Roure, Mark J. Weal
Department of Electronics and Computer Science

University of Southampton, UK

Abstract

The interoperability work of the OHSWG identified three major domains of hypermedia that
needed to be addressed, Navigational, Spatial and Taxonomic. The Fundamental Open
Hypermedia Model attempted to represent all three domains in one structural model and allowed
context to be tackled consistently across the domains. In this paper we reflect on our experiences
with creating contextual applications using FOHM and describe some of the structures that lie
beyond the original three domains. We also explore some of the issues of having a generic model
of context alongside a hypermedia model of structure.

1 Introduction
The Open Hypermedia Protocol (OHP) [2], developed by the Open Hypermedia Systems
Working Group (OHSWG) was an attempt to define an interoperability protocol for Open
Hypermedia Systems. As well as a communication protocol it also required a model of
hypermedia that was acceptable to the larger community. To this end the OHSWG defined
several ‘domains’ that would describe hypermedia’s various application areas (Navigational,
Spatial and Taxonomic Hypertext).

The original OHP definition became OHP-Nav, focused on navigational structures. It was
envisaged that the remaining domains would be covered by other protocols (OHP-Space, OHP-
Tax etc.)

Researchers at Southampton took the view that any model of hypermedia should encompass all
three of these described domains [7], this would allow cross-domain browsing (such as following
a Navigational Link to a Spatial Area) and also cross-domain fertilisation (where the facilities of
one domain enhance another, such as Taxonomic branching becoming available with
Navigational or Spatial structures).

This work resulted in the Fundamental Open Hypermedia Model (FOHM) [8] a generalised
model of hypermedia capable of handling the three domains.

2 FOHM
FOHM is heavily based on the OHP-Nav model but it generalises that model in several ways:

• Associations. Rather than specify Links whose members must be either source,
destination or bi-directional, FOHM specifies Associations, which contain a list of keys
called a feature space. Each member of the Association must specify a value for each
key, effectively binding itself to the Association at a particular feature vector. For
example, in FOHM a Link is an Association with only one feature, called direction.

• Context. To support Taxonomic ‘Perspective’ structures, where a choice has to be made
about what sub-categorisation is to be made, FOHM allows Context objects to be
attached at various points of the structure. These are sets of key/value pairs that describe

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 27

in which context this part of the structure can be seen. Figure 1 shows context being used
in a navigational link, in this case the context specifies that for an adult the link has two
destinations but for a child it has only one. The Figure shows that when a child retrieves
the link the context that specifies adults fails (shown in black) and the corresponding
destination is pruned away (the grey structure is removed), therefore children only see a
link with a single destination.

• Behaviour. In addition to Context objects, FOHM also allows Behaviour objects to be
attached to any point of the hyperstructure. These are used by clients to record specific
behaviour that might be required at certain events. For example, a behaviour attached to a
document might contain instructions on how the client should modify the user’s context
given that they have read the document (e.g. to represent knowledge gained).

If we consider the set of all possible structure, shown in Figure 2, we can begin to appreciate the
scope of FOHM. The OHP view was that the Navigational (Nav), Spatial (Space) and
Taxonomic (Tax) structures were separate and that separate protocols would deal with each one.

SRC DEST Binding

Association

Reference

Data

DEST

Link

Adult Child Context

Figure 1: A Contextual Link in FOHM

The Southampton view was that the domains overlapped and that there were structures that
would require a mixture of domains to express (such as a link to a space). FOHM was therefore
an attempt to create a model capable of representing the union of all three domains (shown in
dark grey in Figure 2).

However, FOHM is actually capable of expressing structure that lies outside of the three
domains (shown in light grey). We do not make the claim that FOHM is capable of expressing
all structure (i.e. that FOHM and the Universal Set are equal) although there is work that
suggests that typed links, which may be represented in FOHM, are as expressive as generic
metadata [10].

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 28

Universal Set of all Structure

FOHM

Nav

Space Tax

Universal Set of all Structure

Nav

Space Tax

The FOHM View of the OHP DomainsThe OHP View of the OHP Domains
Figure 2: Beyond the Domains

3 Beyond the Domains
We have created a stand-alone Structure Server, called Auld Linky [6], that pattern matches
FOHM structures and prunes them for context. In our work with Linky we have observed that
many of the structures that we are using do not fall with the traditional domains but in fact lie
outside of them (in the light grey area of the diagram).

In the following sections we will look at some examples of structure that do not wholly fit within
a single domain. Real-world Links that extend the notion of a link beyond the OHP-Nav
definition, Virtual Documents that extend Spatial structures with Taxonomic contexts, and
Sculptural Links, a structure that, in OHP terms, exists in the overlap between the Navigational
and Taxonomic domains.

3.1 Real-world Links
As part of the Equator project at Southampton we are investigating linking over real world
spaces. In this case there is only one Data item, which represents the physical Universe. Areas in
this Data item (areas within the real world) can then be referenced by name or location, just as
words or paragraphs can be referenced in a normal hypermedia document. Links can
subsequently be authored from one location to another.

In the Equator ‘City’ project we are applying Auld Linky and this real world linking metaphor to
museum spaces. Visitors move around the museum with a hand held PDA and a positioning
system (currently based on ultrasonics). When they move into a source area for a link the PDA
shows them the suggested destination(s).

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 29

SRC DEST

REAL
WORLD

BEFORE

Adult

AFTER

Child

audio audio

BEFORE

Child

Link

text

Figure 3: The City ‘Real-world’ Link Structure
One of the things we realised about the traditional source/destination based Link structure is that
it does not allow for particularly complex information concerning the link itself. In the OHP-Nav
model there is a description field, but this is just plain text and it is not clear if this is relevant
before the link is followed, after it has been followed, or for overview purposes. One of the
aspects of real world links is that, as visitors follow them by walking, the transition between
source and destination can take some time. To cope with this and also to deal with our more
sophisticated media requirements (we were particularly interested in using audio) we designed a
new ‘shape’ to the traditional link, shown in Figure 3.

This new City link structure exists slightly beyond the original OHP domain of Navigational
structure. It still has only a single feature called direction, but now items can be bound to it with
any one of five values: ‘Source’, ‘Destination’ and ‘Bi-Directional’ as before but also as ‘Before’
or ‘After’.

These last two values represent multimedia descriptions of the link that are appropriate to display
to the user before and after they have made the link transition (i.e. an audio file bound as ‘before’
could be played as they walk towards the destination). These effectively offer the user
recommendations for the next exhibit (Before) and rationales for the current exhibit (After).

The current system shows the user the destinations on a map. A possible extension to this is to
add a sixth kind of binding that describes the ‘directions’ to the destinations, in effect informing
the user of how to follow the link (something that in a digital link is hidden to the user but in a
real-world environment needs to be expressed to them). This is made more complex because
several different directions may have to be given to different destinations.

3.2 Virtual Documents
In another application we have experimented with virtual documents where a tour is constructed
over many media fragments. Instead of following the tour one step at a time the client constructs

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 30

a document out of the tour members. Context objects attached to each member mean that
membership of the tour is conditional and the document appears differently in different contexts.

This Xanalogical [11] idea is similar to conditional transclusion [9], where links are
automatically resolved and their destinations may or may not be inserted into a document
depending on the context. It is interesting to note that this is a contextual extension of a trail or
tour structure (that have been described in hypermedia research for several years [5, 12]) but that
even these basic tour structure do not fit into the three domains.

In terms of the original domains a virtual document is similar to a sequence of items from the
Spatial domain and as it relies on context it also draws from the Taxonomic domain. However,
virtual documents have different semantics to spatial list structures and thus belong beyond the
spatial domain in the undefined area covered by FOHM.

3.3 Sculptural Hypertext
Recently the idea of Sculptural Hypertext has been suggested [1]. Sculptural Hypertext is distinct
from traditional ‘Calligraphic’ node/link hypertext in that all nodes are initially interlinked.
Meaningful hypertexts are thus constructed, not by making connections between nodes, but by
removing them.

SRC DEST

Story
Fragment

Link

Context

Behaviour

Behaviour

Figure 4: A Sculptural Hypertext Link

We have previously presented a sculptural hypertext system based on Auld Linky that uses link
structures to facilitate sculptural hypertext [13]. The structure is shown in Figure 4.

It works by taking a generic link (as first described with Microcosm [3]) and generalising it even
further. A generic link is one that has a source area that may appear in any document (for
example glossary links). The sculptural link has a totally generic source that is valid in all
positions of all documents. It works because the link has a context object attached to it and
therefore only appears once the user’s context matches with its own. As the user follows the
sculptural links through the system, Behaviour objects on the link cause the users’ context to
evolve, this in turn reveals new links.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 31

Because the sculptural links require context they could not be represented in OHP-Nav or the
OHP-Nav model. In fact they exist in the intersection between Navigational and Taxonomic
structure (as it is taxonomic hypertext that includes context).

4 Context vs. Structure
In the City project we have used hypermedia Anchors (References and LocSpecs in FOHM) to
refer to actual locations in the real world. We have experimented both with named locations and
also with regions (defined against map co-ordinates). We have then used context to model the
user’s preferences and knowledge (for example, previously visited exhibits).

However, it would also have been possible to use context to model the user’s location, in effect
scooping all the links according to context in the spirit of Sculptural Hypertext. A design
decision had to be made about whether the user would search for links anchored in a certain
region or whether they would search for all links but only in the context of the current region.

Early work on anchors described them as giving links context within a document [4], but as no
other contextual dimensions were being considered, anchors were rapidly absolved into
mainstream models. Only when we consider context fully can we appreciate that position is only
one contextual dimension amongst many.

5 Conclusions
In our work with FOHM, Auld Linky and Context we have found a wealth of valuable structures
beyond the original domains considered for OHP-Nav. Some of these, such as the contextual
virtual documents, have been reminiscent of early hypermedia concepts, while others, such as
the sculptural links, have helped to form new paradigms of hypermedia interaction.

These structures support the argument for developing models that deal with all hypermedia
structure consistently, as opposed to specialising in a particular domain. All of these structures
use or depend on context to add value. Our experience suggests that the border between what
should be context and what should be structure sometimes becomes blurred. In particular,
anchors, which specify position within a

larger whole, seem to be an aspect of context that history has caused to be treated specially.

It is not yet clear whether we should be making efforts to move other parts of hypermedia
structure from the realm of context to that of defined structure, or whether we should be
attempting to create a general model of context that we can use in place of specialised structure.

6 Acknowledgments
This research is funded in part by EPSRC IRC project “EQUATOR” GR/N15986/01. Thanks to
the Equator City Project, particularly Matthew Chalmers and Ian McColl of the University of
Glasgow.

References
[1] M. Bernstein. Card Shark and Thespis: exotic tools for hypertext narrative. In Proceedings of

the Twelth ACM Conference on Hypertext and Hypermedia, Arhus, Denmark, pages 41–50,
2001.

[2] Hugh Davis, Siegfried Reich, and David Millard. A Proposal for a Common Navigational
Hypertext Protocol. Technical report, Dept. of Electronics and Computer Science, 1997.
Presented at 3.5 Open Hypermedia SystemWorking Group Meeting. Aarhus University,
Denmark. September 8-11.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 32

[3] Andrew M. Fountain, Wendy Hall, Ian Heath, and Hugh C. Davis. MICROCOSM: An Open
Model for Hypermedia With Dynamic Linking. In A. Rizk, N. Streitz, and J. Andr´e, editors,
Hypertext: Concepts, Systems and Applications(Proceedings of ECHT’90), pages 298–311.
Cambridge University Press, 1990.

[4] Linda Hardman, Dick C.A. Bulterman, and Guido van Russum. Links in Hypermedia: the
Requirement for Context. In Proceedings of the ’93 ACM Conference on Hypertext, Nov. 14-
18, 1993, Seattle, WA, pages 183–191, 1993.

[5] Catherine C. Marshall and Peggy M. Irish. Guided Tours and On-Line Presentations: How
Authors Make Existing Hypertext Intelligible for Readers. In Proceedings of the ’89 ACM
Conference on Hypertext, Nov. 5-9, 1989, Pittsburgh, PA, pages 15–26, 1989.

[6] Danius T. Michaelides, David E. Millard, Mark J. Weal, and David C. De Roure. Auld leaky:
A contextual open hypermedia link server. In Siegfried Reich and Kenneth M. Anderson,
editors, OHS7 and SC3, Proceedings of the ..., To be published in Lecture Notes in Computer
Science, Springer Verlag, Heidelberg (forthcoming), 2001.

[7] David Millard, Hugh Davis, and Luc Moreau. Standardizing Hypertext: Where Next for
OHP? In Siegfried Reich and Kenneth M. Anderson, editors, OHS6 and SC2, Proceedings of
the ..., Published in Lecture Notes in Computer Science (LNCS 1903), Springer Verlag,
Heidelberg (ISSN 0302-9743), pages 3–12.

[8] David E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich. FOHM: A Fundamental
Open Hypertext Model for Investigating Interoperability Between Hypertext Domains. In
Proceedings of the ’00 ACM Conference on Hypertext, May 30 - June 3, San Antonio, TX,
pages 93–102, 2000.

[9] Adam Moore, Timothy J. Brailsford, and Craig D. Stewart. Personally tailored teaching in
WHURLE using conditional transclusion. In Proceedings of the ’01 ACM conference on
Hypertext, Aarhus, Denmark, pages 163–164, 2001.

[10] Graham Moore and Luc Moreau. From Metadata to Links. In Siegfried Reich and Kenneth
M. Anderson, editors, OHS6 and SC2, Proceedings of the ..., Published in Lecture Notes in
Computer Science, (LNCS 1903), Springer Verlag, Heidelberg (ISSN 0302-9743), pages 77–
86.

[11] Theodor Holm Nelson. Literary Machines. Published by the author. Mindful Press, 1987.
[12] Aggelos Pikrakis, Tilemahos Bitsikas, Stelios Sfakianakis, Mike Hatzopoulos, David C. De

Roure, Wendy Hall, Siegfried Reich, Gary J. Hill, and Mark Stairmand. MEMOIR —
Software Agents for Finding Similar Users by Trails. In PAAM98. The Third International
Conference and Exhibition on The Practical Application of Intelligent Agents and Multi-
Agents. March 23-25, London, UK, pages 453–466, March 1998.

[13] Mark J. Weal, David E. Millard, Danius T. Michaelides, and David C. De Roure. Building
Narrative Structures Using Context Based Linking. In Proceedings of the ’01 ACM
conference on Hypertext, Aarhus, Denmark, pages 37–38, 2001.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 33

Asynchronous Linking in a Service-Oriented Architecture

Sanjay M. Vivekanandan, Kenneth Tso, Mark K. Thompson, David C. De Roure
Department of Electronics and Computer Science

University of Southampton, UK
{smv99r,kt00r,mkt}@ecs.soton.ac.uk

ABSTRACT
In this paper, we identify research issues in the development of system infrastructure support for
asynchronous linkservices in a service-oriented architecture. We explore the suitability and
applicability of using MQSeries Everyplace to provide a messaging backbone for linkservices
that increases reliability, fault tolerance, and scalability. We identify and discuss some important
problems and research issues related to this approach.

INTRODUCTION
We take the position that breaking the traditional synchronous nature of interactions between
Open Hypermedia Systems components would engender reliability and scalability of services.
We suggest that a service-oriented architecture, such as that offered by Web Services, readily
enables hypermedia services to be published, deployed, and invoked by other services on both a
global scale on the Internet, and also in a local-area peer-to-peer and pervasive scale. To enable
asynchronicity between services, we suggest that store-and-forward middleware messaging
systems, such as IBM’s MQSeries Everyplace[7], provide the levels of communication
decoupling required to meet this agenda.

This position paper introduces these concepts from this perspective and proposes an example
implementation in a scenario where a user with a mobile device attempts to invoke linkservices
whilst working in a disconnected state.

Distributed service-oriented architectures help create a distributed environment in which any
number of services, regardless of physical location, can interoperate seamlessly in a platform–
and language neutral manner. The success of any distributed service architecture is not only
dependent on its ability to seamlessly integrate new and existing services, but also to function
during periods of intermittent network connectivity.

In recent years, the Open Hypermedia Systems Working Group (OHSWG) has been working on
a series of open hypermedia protocols to achieve interoperability between Open Hypermedia
Systems[3]. The original Open Hypermedia Protocol (OHP)[6] effort was followed by the
Fundamental Open Hypermedia Model (FOHM)[10], the latter concentrating on the link data
model rather than an on-the-wire protocol. A contextual structure server, Auld Linky[9], has
been developed grounded on the FOHM model and was designed to be a simple, lightweight
structure server that serves according to contextual queries. The development of Auld Linky to
date has not concerned security features or any level of transaction guarantee, for that has not
been the focus of that group’s activity to date. Recent work at Southampton has begun to
investigate mechanisms for securing Auld Linky using MQSeries Everyplace[2].

MQSeries Everyplace (MQe) is designed to meet the needs of lightweight mobile devices such
as phones and PDAs. It enables mobile devices to securely exchange messages both
synchronously and asynchronously using queues and queue managers. Asynchronous messaging
is vital in distributed architectures, for service providers and requestors cannot always depend on

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 34

the availability of each other to do their work. Through a system of queues, messages are
exchanged in real time with transactional guarantee. During periods of network disconnection,
messages are stored locally until a connection can be established and available for message
delivery.

Service-Oriented Architecture
What is a Service-Oriented Architecture?
Service-oriented architectures (SOA) support a programming model that allows service
components residing on a network to be published, discovered, and invoked by each other.
Typically these services components interoperate with each other in a platform– and language
independent manner.

Figure 1. SOA, roles and operations.

The SOA consists of three core components: service brokers, service providers and service
requesters (see Figure 1). A service broker acts as an intermediary between the service provider
and the service requester, registers and categorizes published service providers and offers search
services. A service provider deploys and publishes the availability of its services, and responds
to requests to use its services. A service requester uses the service broker to find and bind to the
desired service.

Web Services
The primary differences between a distributed service architecture and a distributed Web Service
architecture is the size of the network being used and the underlying technologies involved. Web
Services extend the SOA programming model into a vast networking platform that allows the
publication, deployment, and discovery of service applications on Internet scale using Web
technologies including SOAP[1] for inter-service communication, WSDL[4] for service
description, UDDI[11] for service directories, and WSFL[5] for multi-service orchestration.

The Web Services platform is organized into the five layers of network, transport, packaging,
description, and discovery, as described in Figure 2

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 35

Figure 2. Web Services Technology Stack

Asynchronous Messaging in a SOA
Among the underlying requirements for SOAs to work effectively is that the network supporting
the components and services need to be reliable, able to handle unpredictable loads, function
during periods of intermittent network connectivity, and complete the ACID test for transactions.
It can be argued that existing application connectivity models are neither sufficient nor
necessarily appropriate for a pervasive computing infrastructure where participants in the
architecture are not guaranteed to be available, discoverable or interact-able from moment to
moment. To this end, we suggest architectures based on Message Oriented Middleware (MOM).
MOM supports asynchronous messaging by using message queues as shown in Figure 3.
Messages are exchanged between the service provider and service requestor through a system of
queues. Messages from the service provider are sent to a queue, where the message stays until
the service requestor is available and can read it from the queue.

From an OHS perspective, asynchronous service interaction readily enables selective and
asynchronous link processing. When considering link resolution in a Distributed Link Service
across multiple link services, where lock-stepped co-ordination between services is unlikely to
be achieved, decoupling document content from resolved links is desirable. There are cases
where the results of link resolution queries may no longer be required – perhaps the user is no
longer reading the document – and thus the ability to propagate message cancellation on queues
between application and services where the queries may not have yet been delivered to services,
or the responses back to the client is desirable.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 36

Figure 3. Message Oriented Middleware

MQSeries Everyplace Capabilities
MQSeries Everyplace (MQe) has a small execution footprint and can comfortably fit into
modern mobile devices. In MQe, once-only message delivery is assured. Messages that are
received for a remote device by MQe Queues will be temporarily held locally until it can be
delivered to its final destination (i.e. when a connection is established). The length of time for
messages to remain on the queue is defined by the queue expiry interval (e.g. 5 minutes). Once
the time limited is exceeded, the message is marked expired and subsequent action (e.g. deleting
it, move it to a dead-letter queue or re-sending it) is determined by a configurable rule in the
queue manager process. Message Listeners can be added to the application to listen for events
occurring on queues, such as message arrival. MQe provides many security features to protect
the confidentially and integrity of messages as well as authenticating entities (e.g. queues, queue
managers and users). Using MQSeries-bridge, messages can be exchanged with other
MQSeries[8] family members, enabling integration of MQe-based services with pre-existing
Enterprise applications.

Discussion
We propose the addition of MQe as a messaging backbone in a SOA that increases reliability,
scalability, fault tolerance, and the loose coupling of providers and requestors. In Figure 4,
Service A may wish to invoke the Leaky service but the user could be on a mobile device that
holds an MQe queue. The user of the client device works offline and stores the SOAP call as a
message in a MQe queue on the client device. During network access, the message is sent to a
separate MQSeries input queue on the server. The MQSeries proxy retrieves the data from the
MQSeries input queue, translating them to HTTP requests, and subsequently forwards it to the
Leaky service. The response from the Leaky service is returned to the proxy, and places it in the
output queue. MQSeries later sends the result of the query to the MQe queue on the client
device, using a queue synchronization process.

Certain issues crop up with the usage of an asynchronous method of transport. The length of time
a queue holds the message is among these issues. MQe queues can be defined with an expiry
interval, and this function ensures that any message that has remained for a period longer then
specified will be deleted. The type of service that is invoked is important in this aspect. If for
example, a user queries an Auld Linky service that responds with a set of autobiographical links

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 37

of an author, the issue of message expiry is not paramount. However, it may be the case that the
links returned are of critical importance requiring the client to be informed with haste. This
raises the question on how and when to update the links, and how to manage the liveness of
asynchronous queries between client and services. MQe does facilitate the concept of filtering
which allows it to perform powerful search functions, thus allowing the client to receive
messages with higher priority first (or with a shorter expiry time). One drawback to this method
is that the links resolved would have to be pre-tagged before being send to the MQe queue.

MQe
Queue

MQe
Queue SOAP

Request
SOAP/HTPP

Requests

Service
Response

MQe Proxy

Auld Leaky
Service

Figure 4. Invoking an Auld Leaky Service

In a peer-to-peer model, mobile devices may act like a service provider and service requestor
simultaneously. Devices using MQe cannot exchange messages without knowing the target
queue manager and queue names and hence cannot readily discover each other’s services. One
possible solution is to set up a server acting similar to a UDDI registry where service providers’
queue manger and queue names together with the services they provide is stored and queried.

In this position paper we have begun to explore the addition of MQe as a messaging backbone
that increases reliability in a SOA, focusing initially on application to link services. The goal of
this infrastructure is to provide reliable asynchronous hypermedia services, and ensures that a
transaction is completed once initiated.

To conclude, we suggest three areas of research relating to asynchronous linkservices in a SOA:

1) Asynchronous Link Processing

For example, how should the query results be delivered to the user? Should it be in a
separate window, and should it be loosely coupled with the user’s interaction?

2) Message expiry

For example, how long should the messages be stored in the queue before being deleted?
How should the messages from different web services be handled?

3) Service Discovery

For example, how can services provide by mobile devices in a peer-to-peer model be
discovered and be invoked by each other?

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 38

REFERENCES
[1] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, D.

Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000.
http://www.w3.org/TR/SOAP

[2] D.C Roure, K. Tso, H. Lambert. Securing a Open Hypermedia System (OHS) Using
MQSeries Everyplace (MQe). Submitted to OHS2002, Maryland,USA.

[3] DAVIS, H. C.,MILLARD, D. E., REICH, S., BOUVIN, N.,GRØNBÆK, K., N¨URNBERG,
P. J., SLOTH, L.,WIIL, U. K., AND ANDERSON, K. M. Interoperability between
hypermedia systems: The standardisation work of the OHSWG. In Hypertext ’99, The 10th
ACM Conference on Hypertext and Hypermedia, Darmstadt, February 21-25,1999 (Feb.
1999), ACM, pp. 201–202.

[4] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Description
Language (WSDL) 1.1, W3C Note 15 March 2001. http://www.w3.org/TR/wsdl.html

[5] F. Leymann. Web Services Flow Language (WSFL 1.0),IBM Software Group, May 2001.
http://www-4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf

[6] Hugh Davis, Siegfried Reich, and David Millard. A proposal for a common navigational
hypertext protocol. Technical report, Dept. of Electronics and Computer Science, 1997.
Presented at 3.5 Open Hypermedia System Working Group Meeting. Aarhus University,
Denmark. September 8-11.

[7] IBM MQSeries Everyplace, http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/mqsev12.html

[8] IBM MQSeries Family. http://www-4.ibm.com/software/ts/mqseries/
[9] MICHAELIDES, D. T., MILLARD, D. E.,WEAL, M. J., AND ROURE, D. C. D. Auld

leaky: A contextual open hypermedia link server. S. Reich and K. M. Anderson, Eds.
[10] MILLARD, D. E.,MOREAU, L., DAVIS, H. C., AND REICH, S. FOHM: A Fundamental

Open Hypertext Model for Investigating Interoperability Between Hypertext Domains. In
Proceedings of the ’00 ACM Conference on Hypertext, May 30 - June 3, San Antonio, TX
(2000), pp. 93–102.

[11] Universal Description, Discovery and Integration, http://www.uddi.org

http://www.w3.org/TR/wsdl.html
http://www-4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/mqsev12.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/mqsev12.html
http://www.uddi.org/

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 39

Session 2: Open Infrastructure

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 40

Securing a Open Hypermedia System (OHS)
Using MQSeries Everyplace (MQe)

David C. De Roure1, Kenneth K. K. Tso1, Howard Lambert2

1Department of Electronics & Computer Science,
University of Southampton,

Highfield, Southampton,
SO17 1BJ, UK

{dder, kt00r}@ecs.soton.ac.uk

2IBM United Kingdom Ltd,
Hursley Park, Winchester

SO21 2JN, UK
howard_lambert@uk.ibm.com

Abstract
The Open Hypermedia Systems Working Group (OHSWG) has spent years working on Open
Hypermedia Protocol and Open Hypermedia Systems. However, relatively less consideration is
given to security, for instance, a contextual link server known as “Auld Leaky” was built with no
security features at all. MQSeries Everyplace is designed with many security features necessary
for building a secure open hypermedia system. “Auld Leaky” was chosen to integrate with
MQSeries Everyplace making use of the security features. MQSeries Everyplace enables a
secure client-server link service to be extended to a secure peer-to-peer distributed link service.

Introduction
In recent years, the Open Hypermedia Systems Working Group (OHSWG) has been
continuously developing [3] and defining [8] the Open Hypermedia Protocol (OHP) [4] in an
attempt to achieve interoperability between Open Hypermedia [1], [2], [5], [9], 10] Systems. Within the
Intelligent Agents Multimedia group at Southampton, the Fundamental Open Hypermedia Model
(FOHM) [7] based on the OHP model was developed. In addition, a contextual link server known
as “Auld Leaky” [6] is constructed around FOHM.

Since “Auld Leaky” is a link server designed to be simple, lightweight but without
considerations of security, it becomes susceptible to attacks over the Internet, in particular, when
transmitting data in plaintext over an open network (e.g. via HTTP).

MQSeries Everyplace (trademark of International Business Machines Corporation) (MQe)
provides sophisticated security capabilities (including authentication and encryption) to
applications running outside the protection of firewall. By integrating with MQSeries Everyplace
and making use of its security capabilities, “Auld Leaky” can be enhanced from a link server
with no security to a link server with full security.

This paper describes firstly the security weaknesses of “Auld Leaky”, and secondly, an overview
of MQSeries Everyplace security features. Thirdly, one possible way of changing “Auld Leaky”
into a secure Open Hypermedia System using the security features provided in MQSeries
Everyplace is described. Finally, the potential of extending a secure client-server link service to a
secure peer-to-peer distributed link service is also discussed.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 41

Security weaknesses in “Auld Leaky”
The potential security threats or weaknesses of “Auld Leaky” are: (as security was not a prime
concern when designing “Auld Leaky”, several security weaknesses exist, which make it
vulnerable to malicious users). First of all, transmitting data in plaintext over an open network
via HTTP means that there is no confidentiality of the data. In addition, there is no authentication
process and hence no control of access to “Auld Leaky” once its URL and port number is
known. As a result, anyone could send all types of requests, including adding and/or deleting
objects from the linkbases, and furthermore, no audit trail is kept showing the identity of the
request or the type of requests to be processed.

An Overview of MQSeries Everyplace (MQe) security features
In the security world, there are four major areas: confidentiality, integrity, authentication and
non-repudiation. Generally, in MQSeries Everyplace, confidentiality of message data is achieved
by encryption. Different cryptors are provided, the choice is driven by the cryptographic strength
needed to protect the data and complying with national security requirements. The use of SHA1
digest ensures the integrity of message data. Authenticators including NT authenticator, mini-
certificates based on WTLS certificate are used for authentication purposes.

MQSeries Everyplace divides security features into four different categories known as local
security, queue-based security, message-level security and link security to protect message data.
Local security aims to provide protection for messages data held by a local queue manager using
cryptors. Queue-base security concerns with protecting message data between an initiating queue
manager and a target queue. Message-level security offers protection for message data
exchanged between an initiating and receiving MQSeries Everyplace applications. Link security
ensures the communication channels between queue managers are protected.

The architecture of a secure link service
Figure 1 illustrates how “Auld Leaky” can be integrated with MQSeries Everyplace. The client
side simply contains a browser and a queue manager, which exists as an authenticatable entity. It
begins with the browser collecting a query initiated by the user. A get message method is
invoked to reliably send the query to the target custom queue on the server side. Then, the
custom queue forwards the query to the link server and the link server response will be
encapsulated in a message object before it is sent back to the client side.

From the security viewpoint, the architecture has several advantages; first of all, only the custom
queue is allowed to directly communicate with “Auld Leaky” internally; secondly, access to
custom queue is restricted to the server queue manager and subject to queue manager and queue
rules. Together, this will provide access control to “Auld Leaky”. Moreover, if four different
custom queues are used instead of one custom queue to process the four different types of
requests to “Auld Leaky”, access control could be achieved at a more granular level. These
requests are [6]:

• GET requests are sent with an ID (a simple string), the relevant object is returned in
the form of XML if located in the linkbase.

• POST requests are sent with a FOHM object in the content of the message. This is then
pattern-matched against the objects in the linkbase.

• PUT requests are sent with a FOHM object in the content of the message. “Auld
Leaky” then adds this object to the linkbase.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 42

• DELETE requests are sent with an ID, the relevant object is located in the linkbase
and removed.

Figure 1. The architecture of a secure link server

The queries and responses exchanged over the insecure communication channel are protected by
encryption and SHA1 digest. Queue managers having a digital signature and a mini-certificate
become authenticatable entities. Furthermore, custom queues can keep audit trails in the form of
messages.

Secure Distributed Link Service

The capabilities of MQSeries Everyplace is not limited by the security features described above.
In addition, it is designed to support lightweight mobile devices. Particularly, its support of peer-
to-peer connection enables the construction of peer-to-peer applications. Building a secure peer-
to-peer distributed link service becomes possible by extending and modifying the secure link
server to enable each peer to initiate and process multiple requests simultaneously. Figure 2
illustrates a concept of a secure distributed link service.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 43

Figure 2. Secure peer-to-peer distributed link service

Conclusion
In this paper, the way MQSeries Everyplace could be used to secure “Auld Leaky” is described.
This includes ensuring the confidentiality and integrity of queries and responses using encryption
and SHA1 digest. Mini-certificates based on WTLS certificate owned by Queue managers on
both client and server side are used to authenticate each other.

With the support of peer-to-peer connection, the secure client-server link service could be
extended to a secure peer-to-peer distributed link service using MQSeries Everyplace.

Acknowledgements
This research is partially supported by department of Hursley Services & Technology at IBM
United Kingdom. A special thanks is given to Dave Millard of Intelligence Agents Multimedia
research group at Southampton for many helpful discussions.

References
 [1] Anderson, K. M., Taylor, R. N. and Whitehead, E. J. Chimera: Hypertext for heterogeneous

software environments. In ECHT ’94. Proceedings of the ACM European conference on
Hypermedia technology, Sept. 18-23, 1994, Edinburgh, Scotland, UK (1994), pp. 94-197.

 [2] Davis, H. C., Knight, S. and Hall, W. Light hypermedia link services: A study of third party
application integration. In ECHT ’94. Proceedings of the ACM European conference on
Hypermedia technology, Sept. 18-23, 1994, Edinburgh, Scotland, UK (1994), pp. 41-50.

 [3] Davis, H. C., Millard, D. E., Reich, S., Bouvin, N., Grønbæk, K., Nürnberg, P. J., Sloth, L.,
Will, U. K. and Anderson, K. M. Interoperability between Hypermedia Systems: The
Standardisation Work of the OHSWG. In Hypertext ’99, The 10th ACM Conference on
Hypertext and Hypermedia, Darmstadt, February 21-25, 1999 (Feb. 1999), ACM, pp. 201-
202.

[4] Davis, H., Reich, S. and Millard, D. A proposal for a common navigational hypertext
protocol. Technical report, Dept. of Electronics and Computer Science, 1997. Presented at
3.5 Open Hypermedia System Working Group Meeting. Aarhus University, Denmark.
September 8-11.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 44

[5] Grønbæk, K. and Trigg, R. H. Design issues for a dexter-based hypermedia system.
Communications of the ACM 37, 3 (Feb. 1994), 40-49.

 [6] Michaelides, D. T., Millard, D. E., Weal, M. J. and DeRoure, D. C. (2001) Auld Leaky: A
Contextual Open Hypermedia Link Server. In Proceedings of the 7th Workshop on Open
Hypermedia Systems, ACM Hypertext 2001 Conference. Aarhus, Denmark.

 [7] Millard, D. E., Moreau, L., Davis, H. and Reich, S. FOHM: A Fundamental Open Hypertext
Model for Investigating Interoperability Between Hypertext Domains. In Proceedings of the
’00 ACM Conference on Hypertext, May 30 - June 3, 1992, San Antonio, TX, pages 93-102,
2000.

 [8] Reich, S., Millard, D. E. and Davis, H. C. (1999) Naming in OHP. Proceedings of the 5th
Workshop on Open Hypermedia Systems, ACM Hypertext '99 Conference, Darmstadt,
Germany, February 21-25 p.43-47.

 [9] Schnase, J. L., Legett, J. L., Hicks, D. L., Nürnberg, P. J. and Sánchez, J. A. Design and
implementation of the HBI hyperbase management system. Electronic Publishing-
Origination Dissemination and Design 6, 1 (June 1993), 35-63.

 [10] Will, U. K. and Leffett, J. J. HyperForm: using extensibility to develop dynamic, open
and distributed hypertext systems. In ECHT ’92. Proceedings of the ACM conference on
Hypertext, November 30-December 4, 1992, Milan, Italy (1992), pp. 251-261.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 45

Arguments for Open Structure Execution Service
Jessica Rubart1, Weigang Wang1, Jörg M. Haake2

1Fraunhofer Institute for Integrated Publication and Information Systems (IPSI)
Dolivostrasse 15

64293 Darmstadt, Germany
{rubart, wwang}@ipsi.fhg.de

2FernUniversität Hagen
Computer Science VI

Informatikzentrum, Universitätsstrasse 1
58084 Hagen, Germany

joerg.haake@fernuni-hagen.de

Abstract: The open hypermedia systems research community works on the provision of
different standardized structure services in open environments. This position paper argues for the
integration of services, which execute structure, to support different application domains. We
describe two usage domains, in which structure plays a key role and where an open set of
structure execution services is needed for the same structure. In addition, the same structure
execution mechanisms are currently implemented redundantly in different systems rather than
reusing structure execution services. Therefore, we propose a way to integrate those services
using the concept of open service provision. Finally, a comparison is made between the current
CB-OHS approach and the emerging Web services approach. This comparison from another
angle reinforces the need for providing basic reusable business functions. It also highlights some
weakness in our current OHS approach and suggests how we can strengthen it.

Keywords: component-based open hypermedia systems (CB-OHS), structural computing,
cooperation support

1 Introduction
Open hypermedia systems research addresses interoperability and sharing of structure and
behavior. The community is working on standardized interfaces to different structure services as
well as on open system architectures to integrate and provide these services. This position paper
argues for the integration of services that execute structure to support special application
domains. The importance of separating behavior from structure and not only structure from data
has been pointed out in [Nürnberg et al. 1996] in the context of hypermedia operating systems.
From the structural computing point of view [Nürnberg et al. 1997] systems need an open set of
behaviors, i.e. computations over structure. In this paper, we present our experiences with an
open infrastructure that we use in the EU project EXTERNAL and talk about how open structure
execution services can help to alleviate some of its problems. Then, we argue that object-
oriented software development can be seen from a structural point of view and thus be supported
by structure execution services, too. Finally, we propose a way to integrate those services using
the concept of open service provision [Wiil et al. 2001].

2 EXTERNAL
The EXTERNAL project [EXTERNAL 2000-2002] aims at supporting Extended Enterprises,
i.e. supporting the cooperation among (distributed) business partners. One important issue in this
context is support for defining and executing work processes. The different partners of this
project provide tools with complementary and partly overlapping functionality for this purpose.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 46

In order to integrate the different tools we have specified a kind of open protocol for work
process support based on a hypermedia data model. We have agreed on a special XML format,
instances of which are used by the different tools and exchanged through a shared repository.
The XML representations reflect a workflow structure. Thus, this format can be a basis for a
standardized OHS-Workflow protocol.

We have recently adopted a service-centered approach regarding the integration of the different
tools. Figure 1 presents an abstract view on the service-centered infrastructure that we are
currently using in the EXTERNAL project. End-users access the infrastructure through a
common Web-based portal. The portal provides access to project-related information and
enables modeling and execution of work processes (among other things). For this, the tools
provide special APIs so that they can be invoked as different services on a specified workflow
structure. The main modeling activities are done with METIS [Lillehagen and Karlsen 1999].
Workware [Jørgensen and Carlsen 1999] is used for enacting work processes, i.e. activate tasks
and work on assigned documents. SimVision (formerly Vité) [Kuntz et al. 1998] provides
probabilistic simulation of work processes facilitating, for instance, risk analysis. Finally, our
component-based cooperative hypermedia systems XCHIPS [Rubart et al. 2001] is used for
cooperative work management services, e.g. enterprise resource planning / management or joint
modeling of shared work processes. The repository services provide support for persistence and
access control of the XML instances. The different services can invoke themselves on specific
workflow structure. Figure 1 does not present explicit lines for all these possibilities. The
infrastructure is open in the sense that new systems can be written or existing ones can be
adapted to communicate with the existing services using the XML-based protocol.

Repository Services

Cooperative Work
Management

Services (XCHIPS)

Database

XML

Simulation
Services, e.g.
Risk Analysis
(SimVision)

Work Enactment
Services

(Workware)

Modeling Services
(METIS)

XML XML XML

Portal

XML

Figure 1. An Abstract View on the EXTERNAL Infrastructure

In the case of Workware and XCHIPS the APIs are implemented as extensions of Web servers,
i.e. special URLs are provided for invoking the services on a given workflow structure
represented using XML. Since the clients are based on Web technology (html and Java) only
minimal installation effort is required.

In summary, the services in Figure 1 work on the same structure. Speaking in terms of open
hypermedia systems, the repository services incorporate foundation services and a kind of

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 47

structure service. The other services are clients using the repository services. Workware,
SimVision and XCHIPS provide execution services on a workflow structure. In EXTERNAL,
the number of execution services provided by them is growing. However, there is currently no
abstraction for execution services so that an open set of them is supported. In addition, some
functionality like, for instance, worklists are implemented in Workware as well as in XCHIPS. A
separate worklist execution service could be (re)used by different systems. At this time, reuse of
existing execution functionality of system A in system B is not possible.

Thus, we can conclude that an additional abstraction for execution services is very useful for
open hypermedia systems since there might be different executions services needed for the same
structure. The set of execution services needs to be open. In addition, some execution services
need to be cooperation-aware, others not.

3 Object-oriented Software
For object-oriented software structure plays an important role. It deals with the composition of
classes and objects and describes the ways in which classes or objects interact. The Unified
Modeling Language (UML) [OMG 1998, Rumbaugh et al. 1999] is the standard notation for
modeling object-oriented software. It is a visual modeling language that is used to specify,
visualize, construct and document the static structure and dynamic behavior of object-oriented
applications.

UML CASE (Computer Aided Software Engineering) tools like Rational Rose6 or Together7
support code generation on different UML models for several object-oriented programming
languages as well as the creation of UML diagrams based on code. UML execution services
could provide support for this and other tasks, such as generating documentation. And again, the
set of execution services needs to be open since the same structure can be executed in several
ways. In addition, these services could be (re)used by the different tools rather than
implementing the functionality again.

4 Integration of Execution Services in the Concept of Open Service Provision
In [Wiil et al. 2001] the multiple open services approach is proposed. It includes a multi-layered
architecture for the different types of services. Each layer is open to new services. Figure 2
shows an execution services layer integrated in the concept of open service provision. It’s a
separate layer that is open to any number of execution services. The execution services (or basic
business function services) use the (application-independent, generic) structure services. Any
number of execution services can work on the same structure. Application A for example does
not use any structure execution service, but is directly connected to a navigational structure
service. Application B is connected to the metadata and workflow structure services and at the
same time to an execution service for the workflow structure. Application C is connected to an
object-oriented structure service as well as an execution service for code generation.

In [Tata et al. 2001] a cooperation services layer is proposed working on top of the structure
services layer. Since the cooperation services layer is useful for the execution services as well,
we propose to put the execution services layer on top of the cooperation services layer. This
enables cooperation-aware execution services and non-cooperation-aware ones. In this context

6 Rational Software, http://www.rational.com/products/rose
7 TogetherSoft, http://www.togethersoft.com/

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 48

we can also think about moving the cooperation services layer into the foundation or structure
services layers.

Existing open questions related to the distribution of the different services [Nürnberg and
Leggett 1998] apply of course to the execution services as well, e.g. on which machines should
the different services run?

Foundation Services

Structure Services

Execution Services

Navigational Metadata SpatialWorkflow OO Design

Code
Generation

Doc.
Generation

Application C

Worklists
and -spaces

Application BApplication A

Wrapper

Risk
Analysis

Figure 2. An Execution Services Layer integrated in the Concept of Open Service
Provision

The separate abstraction of the execution services is valuable since we need several of them on
the same structure. Putting all of them in the structure service is not open to new execution
services. A new execution service then means that any implementation of the structure service
needs to be updated. Putting them in the applications means that an execution has to be re-
implemented in every application that needs it.

Regarding the integration in the user interfaces of the applications we might think about
execution services that include a user interface and ones that do not include one. This implies
that there might be a need for basic execution services without a user interface, which are used
by execution services including a user interface. This means that horizontal interoperability for
execution services working on the same structure is required.

Horizontal interoperability is generally important for composing structure and execution
services.

5 OHS Services and Web Services
OHS services and Web services have a goal in common that is to make various systems open,
linkable and interoperable. They both try to solve many of the same problems that were solved in

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 49

previous generations of computing: interface definition, endpoint routing, and data
representation, however, they both do it in an Internet friendly way, i.e., through protocol
interoperability and common transport.

The first OHS protocol, OHP-Nav, focuses on linking; while the newer OHS architectures, such
as MOS and the above proposed extension of MOS, have broaden their scope to provide an open
set of services (not only structural, but also functional) to various applications that confirm to
certain open protocols. This is coincident to the approach of newly emerged Web service
technologies. Although, they might have a short history, Web service technologies have
developed very fast and become a quite effective and complete approach for enterprise
integration. Therefore, for further development of OHS technology, it is very helpful to have a
close look at Web service technologies and the Integrated Service Environments that make the
development of Web services easier.

The Web service technologies provide a platform and vendor independent way to

• Make business functions readily shareable through WSDL (Web Services Description
Language), SOAP (Simple Object Access Protocol) standards, and some newly
developed Java XML and messaging APIs;

• Compose the shareable services into composite services or link them into a flexible
process flow using various technologies, such as XLANG (Microsoft), or WSFL (Web
Services Flow Language, IBM), or results of the WfMC (Workflow Management
Coalition), or BPML (Business Process Modeling Language). The winner is yet to be
decided;

• Deliver it in the right format (XML as the lingua franca, also Swing, Microsoft
Foundation Classes or Wireless Markup Language); and,

• Make them discoverable and available to others anywhere (using UDDI standard –
Universal Description, Discovery and Integration).

The typical Integrated Service Environments are the Microsoft VS.Net and some J2EE based
Environments, such as SilverStream eXtend. VS.Net provides a single unified integrated
development environment (IDE) for all languages to develop XML Web services and aggregate
these services into applications. SilverStream eXtend provides Build & Orchestrate Services and
Consume & Deliver Services to simplify the Web services development to a level that ordinary
business application developers can easily do.

In the OHS community, there are also research efforts on service development environments
[Wiil et al. 2001]. Comparing with Web service technology, OHPs function as a combination of
WSDL and SOAP, but OHPs are instance protocols for different hypertext domains, rather than
WSDL and SOAP kind of general mechanisms that can be used to describe and communicate
with an open set of services. Similar to the common Web service result format, each hypertext
domain has also a DTD describing its underlying structure. It should be possible to develop
something similar to WSDL and SOAP, or to simply use them for accessing the OHS services.
The purpose of the execution services proposed in this paper is to provide basic shareable
business functions using the OHS technology (e.g., its structural services and foundation
services). One of the basic business functions is to support flexible processes. Such a function
can be developed as an OHS Workflow execution service upon the OHS Workflow structure
services, so as to provide an alternative approach for services composition and for linking
services into a flexible process flow. With the workflow execution services, we could support
not only server-side composition but also the client-side composition (for applications) through
the structure services and execution services.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 50

6 Summary
In this paper, we proposed a new execution services layer for open hypermedia systems and
showed how such execution services can be reused by different applications. Also, a comparison
is made between the OHS execution services and Web services. This comparison has reinforced
the need for a basic business function service layer that we identified in the enterprise modeling
and operation application domain and the object-oriented software development domain.
Through the comparison, we also identified the counterpart technologies and complementary
technologies that we can also develop, learn from or simply make use of.

References

[EXTERNAL 2000-2002] EXTERNAL, EU Project, IST-1999-10091, New Methods of Work
and Electronic Commerce, http://research.dnv.com/external/, 2000-2002.

[Jørgensen and Carlsen 1999] Jørgensen, H. D. and Carlsen, S. Emergent Workflow: Integrated
Planning and Performance of Process Instances. In Proceedings of Workflow
Management '99, 1999.

[Kuntz et al. 1998] Kuntz, J. C., Christiansen, T. R., Cohen, G. P., Jin, Y. and Levitt, R. E. The
Virtual Design Team: A Computational Simulation Model of Project Organizations, In
Communications of the ACM, vol. 41, no. 11, 1998, 84-92.

[Lillehagen and Karlsen 1999] Lillehagen, F., and Karlsen, D. Visual Extended Enterprise
Engineering embedding Knowledge Management, Systems Engineering and Work
Execution. In Proceedings of IEMC '99, IFIP International Enterprise Modeling
Conference, 1999.

[Nürnberg et al. 1996] Nürnberg, P. J., Leggett, J. J., Schneider, E. R., and Schnase, J. L.
Hypermedia Operating Systems: A New Paradigm for Computing. In Proceedings of
Hypertext '96, ACM Press, 1996, 194-202.

[Nürnberg et al. 1997] Nürnberg, P.J., Leggett, J.J., and Schneider, E.R. As We Should Have
Thought. In Proceedings of Hypertext’97, ACM Press, 1997, 96-101.

[Nürnberg and Leggett 1998] Nürnberg, P.J., and Leggett, J.J. Assessment of the Current State of
Open Hypermedia Standardization Efforts. In Proceedings of the 4th International
Workshop on Open Hypermedia Systems at Hypertext’98, 1998.

[OMG 1998] OMG: Unified Modeling Language Specification. Object Management Group,
Framingham, Mass., Internet: http://www.omg.org, 1998.

[Rubart et al. 2001] Rubart, J., Haake, J.M., Tietze, D.A. and Wang, W. Organizing Shared
Enterprise Workspaces Using Component-Based Cooperative Hypermedia. In
Proceedings of Hypertext’01, ACM Press, 73-82, 2001.

[Rumbaugh et al. 1999] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[Tata et al. 2001] Tata, S., Hicks, D.L., and Wiil, U.K. Cooperation Services in the Construct
Structural Computing Environement. In Proceedings of the 3rd International Workshop
on Structural Computing at Hypertext’01, LNCS, Springer Verlag, 2001.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 51

[Wiil et al. 2001] Wiil, U.K., Hicks, D.L., and Nürnberg, P.J. Multiple Open Services: A New
Approach to Service Provision in Open Hypermedia Systems. In Proceedings of
Hypertext’01, ACM Press, 2001, 83-92.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 52

Workflow Description for Open Hypermedia Systems

Sanjay M. Vivekanandan, David C. De Roure
Department of Electronics and Computer Science

University of Southampton, UK
{smv99r,dder}@ecs.soton.ac.uk

ABSTRACT
In this paper, we identify research issues in the development of system infrastructure support for
introducing workflow support into Open Hypermedia Systems. We explore the suitability and
applicability of having hypermedia services in a Web Services architecture, and integrating Web
Services Flow Language for the coordination and interoperability of services. We identify and
discuss some important problems and research issues related to this approach.

INTRODUCTION
We take the position that introducing workflow support into Open Hypermedia Systems (OHS)
would enable coordination and integration of services. We suggest that a service-oriented
architecture, such as that offered by Web Services, readily enables hypermedia services to be
published, deployed, and invoked by other services on a global scale on the Internet. To enable
integration and coordination between services, we suggest that workflow service components,
such as IBM’s MQSeries Workflow[7] and Web Services Flow Language (WSFL)[5], provide
the levels of interoperability required to meet this agenda.

This position paper introduces these concepts from this perspective and identifies the research
issues in the development of system infrastructure support for the composition of multiple OHS
services.

Workflow deals with the management, specification, and execution of operations (business
processes) in organizations. A business process is a coordinated set of work activities. It
addresses the concerns of coordination of geographical and organizational distribution within
distributed organizations.

Distributed service-oriented architectures help create a distributed environment in which any
number of services, regardless of physical location, can interoperate seamlessly in a platform–
and language neutral manner. The goal of the Web Services architecture is to simplify the
development and integration of distributed services over the network, and one of the key aspects
of this goal is to enable inter and intra enterprise business processes and workflows to seamlessly
integrate new and existing services.

In recent years, the Open Hypermedia Systems Working Group (OHSWG) has been working on
a series of open hypermedia protocols to achieve interoperability between Open Hypermedia
Systems[3]. The original Open Hypermedia Protocol (OHP)[6] effort was followed by the
Fundamental Open Hypermedia Model (FOHM)[10], the latter concentrating on the link data
model rather than an on-the-wire protocol. In the OHS approach an open hypermedia system
consists of three types of components: the client, a link or structure service, and a hyperbase or a
linkbase. In the OHS architecture the interfaces between these components are clearly defined,
and this allows each interface to be clearly defined as a Web Service. Any application or
hypermedia system conforming to the respective interface definition can integrate with other
OHS conformant systems. For example, any hypermedia system implementing the OHS client

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 53

interface can use OHS linking and navigation services provided by any OHS conformant link
server. A Web Service architecture would allow these OHS services to be published, deployed,
and invoked by other like- minded services on a global scale. WSFL builds on this scenario by
building a framework in which service providers and consumers work together to implement and
initiate standard business processes. This framework allows anyone who properly implements
the appropriate OHS service interfaces to assume the various roles of OHS components.

Service-Oriented Architectures and Web Services
Service-oriented architectures (SOA) support a programming model that allows service
components residing on a network to be published, discovered, and invoked by each other.
Typically these services components interoperate with each other in a platform– and language
independent manner.

The primary differences between a distributed service architecture and a distributed Web Service
architecture is the size of the network being used and the underlying technologies involved. Web
Services extend the SOA programming model into a vast networking platform that allows the
publication, deployment, and discovery of service applications on Internet scale using Web
technologies including SOAP[1] for inter-service communication, WSDL[4] for service
description, UDDI[11] for service directories, and WSFL for multi-service orchestration.

The Web Services standard of primary interest in this paper is WSFL. WSFL is the Web
Services Flow Language, and is an XML language for the description of Web Services
compositions as part of a business process definition. It was developed by IBM to be part of the
Web Services framework, and to complement existing standards and protocols. The WSFL
specification considers two types of Web Services compositions:

• Flow Model: The Flow model describes how to choreograph the functionality
provided by a collection of Web services to complete a particular transaction.

• Global Model: The Global model describes the interaction of a collection of Web
Services with each other.

Workflow

Workflow Concepts
Workflow deals with the management, specification, and execution of operations (business
processes) in organizations. Business processes are often automated using Workflow
Management Systems (WfMS)[9]. WfMSs are tools that enable model-driven design, analysis,
and simulation of business processes, which can be designed from scratch or from templates that
support rapid application development. WfMSs also provide features for monitoring the
execution of business processes and for automatically reacting to monitored events. In this
section, we describe the basic workflow management system concepts that are used in the rest of
this paper, and explain how these concepts are described in WSFL.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 54

Client Link Service Link Base

Submit
Query

Receive
Query

Transmit
Query

User
Preference

Certify
Client

Receive
Query

User
Profile

Submit
Query with user

data
Transcoding

Service

Resolve Query

Figure 1. A Workflow Process

Workflow specifications usually describe the actions that are required to take place during the
execution of business processes, and the overall flow of process. Figure 1 shows a workflow
process modelled using a directed-edge graph. Each box is an activity (a transaction to be
completed), and each activity is an individual Web Service, described by a WSDL document.
All of the activities are linked together using arrows; called directed edges, that describes the
flow of processing control from one activity to the next. Decisions are made at various control
points to decide whether certain conditions have been met before the next activity is processed.
The dotted-lines indicate the flow of information between activities. WSFL is essentially a tool
to create an XML representation of the directed-edge graph that is both human and machine
readable. By consuming WSFL, a workflow engine like IBM’s MQSeries Workflow, can invoke
and manage the entire business process.

Roles and Discovery
Every activity within a WSFL flow model is implemented in the form of a Web service offered
by a Web service provider and represents the significant roles that must be filled to complete that
process. Each service provider is expected to provide and implement the Web Service, or a
composition of Web Services that would complete that transaction. From Figure 1, any Web
Service provider that properly implements the Client, LinkService, and LinkBase Services may
fill these roles. The fact that any OHS application adhering to the respective interface definition
can interact with other OHS conformant systems allows service providers to fulfill these roles
provided its compatible with the WSFL flow model for that process. The OHS Flow Model that
corresponds with the graphical representation of Figure 1 is defined by the following WSDL
specification:
<serviceProvider name =”Client” type=”client”/>

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 55

<seriviceProvider name=”Linkservice” type=”linkservice”/>
<serviceProvider name=”Linkbase” type=”linkbase”/>

There are four different ways that the Web Services can be located: statically, locally, via UDDI,
or dynamically while the transaction is being executed.

With a static location, the global model identifies a specific Web Service or composition of Web
Services as the service provider for a given role. Local services are Web Services that are local
to workflow engine processing the request. Locating a Web Service via UDDI essentially
requires the global model to search the UDDI registry and retrieve a list of suitable Web
Services. The global model decides on the Web Service by referencing a selection policy that
may select the first service in the list, selecting a service at random from the list, or some user-
defined algorithm. The use of UDDI allows multiple service providers to compete for the right to
implement a role within a process. The ability to dynamically locate, and bind to service
providers based on user defined selection policies adds a new dimension to conducting
transactions on the Web that did not exist prior -- dynamic federation and integration of loosely
coupled application components.

Recursive Composition
Recursive composition allows various service providers to combine services into a single
solution. For example, a service provider may offer a LinkService Web Service that is actually a
composition of Web Services provided from a number of different service providers (notification
services, transcoding services, link resolver services). The end user only invokes the
LinkService service, not the individual services that make up the LinkService service.

Discussion
In this paper we propose an approach to introduce workflow support for OHS systems. The goal
of the infrastructure is to automate some of the services, making it simpler to maintain and
integrate. We have also begun to explore the deployment of hypermedia services within a Web
Services architecture, and integrating WSFL for the coordination and interoperability of these
services.

To conclude, we suggest three areas of research relating to workflow support for OHS:

1. Application Interaction

For example, how does a Web Service advertise its ability and willingness, to participate
in a workflow process.

2. Reliability of Services

For example, how do service providers guarantee the reliability of its services, and should
there be a service-level agreement to guarantee reliability during a workflow process?

REFERENCES
[1] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, D.

Winer. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000.
http://www.w3.org/TR/SOAP

[2] D.C Roure, K. Tso, H. Lambert. Securing a Open Hypermedia System (OHS) Using
MQSeries Everyplace (MQe). Submitted to OHS2002, Maryland,USA.

[3] DAVIS, H. C.,MILLARD, D. E., REICH, S., BOUVIN, N.,GRØNBÆK, K., N¨URNBERG,
P. J., SLOTH, L.,WIIL, U. K., AND ANDERSON, K. M. Interoperability between
hypermedia systems: The standardisation work of the OHSWG. In Hypertext ’99, The 10th

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 56

ACM Conference on Hypertext and Hypermedia, Darmstadt, February 21-25,1999 (Feb.
1999), ACM, pp. 201–202.

[4] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web Services Description
Language (WSDL) 1.1, W3C Note 15 March 2001. http://www.w3.org/TR/wsdl.html

[5] F. Leymann. Web Services Flow Language (WSFL 1.0),IBM Software Group, May 2001.
http://www-4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf

[6] Hugh Davis, Siegfried Reich, and David Millard. A proposal for a common navigational
hypertext protocol. Technical report, Dept. of Electronics and Computer Science, 1997.
Presented at 3.5 Open Hypermedia System Working Group Meeting. Aarhus University,
Denmark. September 8-11.

[7] IBM: MQSeries Workflow: http://www-4.ibm.com/software/ts/mqseries/workflow/, 2002
[8] MILLARD, D. E.,MOREAU, L., DAVIS, H. C., AND REICH, S. FOHM: A Fundamental

Open Hypertext Model for Investigating Interoperability Between Hypertext Domains. In
Proceedings of the ’00 ACM Conference on Hypertext, May 30 - June 3, San Antonio, TX
(2000), pp. 93–102.

[9] The Workflow Management Coalition. The workflow reference model. Technical report,
Workflow Management Coalition,http://www.wfmc.org/standards/docs/tc003v11.pdf.

[10] Universal Description, Discovery and Integration, http://www.uddi.org

http://www.w3.org/TR/wsdl.html
http://www-4.ibm.com/software/solutions/Webservices/pdf/WSFL.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.uddi.org/

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 57

Session 3: Lessons learned and Future Work

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 58

OHS: Lessons learned and Future Work

Jörg M. Haake1, Dave E. Millard2
1FernUniversität Hagen
Computer Science VI

Informatikzentrum, Universitätsstrasse 1
58084 Hagen, Germany

joerg.haake@fernuni-hagen.de
2Department of Electronics and Computer Science

University of Southampton, UK
dem@ecs.soton.ac.uk

ABSTRACT
In this paper, we summarize the results of the closing session of the International Workshop on
Open Hypermedia Systems held in conjunction with ACM Hypertext & Hypermedia 2002. The
workshop participants identified three main areas of research in OHS: web technologies,
hypermedia concepts, and open infrastructures. Lessons learned include: that the use of XLink is
currently insufficiently specified, that HTML linking can be used to deliver higher-level linking
services and that web services can be used as an infrastructure to deliver OHS concepts. The
workshop participants felt that OHS technology was increasingly relevant to web research, as
more and more web sites are beginning to manage their structure and content, and that more
work is needed on making existing OHS knowledge accessible to the web community.

INTRODUCTION
This paper reports the results of the plenary discussion in the closing session of the International
Workshop on Open Hypermedia Systems, which was held in conjunction with ACM Hypertext
& Hypermedia 2002 on June 12, 2002. The workshop participants discussed three issues:

• current research themes in the field of OHS,

• lessons learned,

• future directions.

We briefly present the results of these discussions in the next three sections.

CURRENT RESEARCH THEMES
The participants identified three main areas of research in the OHS field: web technologies,
hypermedia concepts, and open infrastructures.

Web Technologies
Several research groups reported about using Xlink as a syntax for providing OHS services [1,
3]. In addition, web services are currently evaluated as an infrastructure for the provision of OHS
services on the web [4].

Hypermedia Concepts
Current topics on hypermedia concepts in the OHS community include

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 59

• the definition of low level linking languages, which can be used to deliver higher level
linking services e.g. across the current Web infrastructure [2];

• research on the notion of context and structure in open hypermedia systems [1, 4] and

• the idea of asynchronous linking [6].

Open Infrastructures
Open infrastructure is a recurring issue in OHS meetings. Of particular concern are at this time
the issues of security and open structure execution services:

• security in OHS includes authentification as well as access control and encryption of
communication exchanges [2].

• Open structure execution services deals with the idea of having an OHS architecture that
offers an extensible set of domain or tasks specific computations over structure [5].

LESSONS LEARNED
The participants agreed on the following lessons learned:

• The use of the XLink standard is by far under specified [1]. The OHS community can
contribute to the field by supplying best practice examples of using XLink.

• Low level linking (e.g. by using HTML constructs) can be used to deliver higher level
linking services [2].

• Web services could be used as an infrastructure to deliver OHS concepts and capabilities
across the Web [6, 7, 5].

FUTURE WORK
More work is needed on Web infrastructure so that the lessons of more than a decade of OHS
research can be applied to an increasingly managed Web, with the eventual objective of making
the Web a platform offering advanced linking capabilities and OHS features.

The participants agreed that results of OHS research should be presented at WWW conferences.
Best practice examples of using XLink are definitely needed in the Web community. New
hypermedia concepts and examples of functioning OHS services and architectures should also be
presented at Web meetings.

REFERENCES
[1] Bent Guldbjerg Christensen and Frank Allan Hansen. XLink—Linking the Web and Open

Hypermedia. David Millard, Jörg M. Haake, Sigi Reich (Eds.), Proceedings of the
International Workshop on Open Hypermedia Systems Core Concepts & Research
Directions, Pre-Conference Workshop at the ACM 13th International Conference on
Hypertext and Hypermedia (HT’02), (University of Maryland, College Park, MD 20742,
USA, June 12th, 2002), pp. 9-18. Informatik Berichte, FernUniversität Hagen: Hagen.

[2] David C. De Roure, Kenneth K. K. Tso, Howard Lambert. Securing a Open Hypermedia
System (OHS) Using MQSeries Everyplace (MQe). David Millard, Jörg M. Haake, Sigi
Reich (Eds.), Proceedings of the International Workshop on Open Hypermedia Systems
Core Concepts & Research Directions, Pre-Conference Workshop at the ACM 13th
International Conference on Hypertext and Hypermedia (HT’02), (University of Maryland,
College Park, MD 20742, USA, June 12th, 2002), pp. 40-44. Informatik Berichte,
FernUniversität Hagen: Hagen.

Proceedings of the International Workshop on Open Hypermedia Systems at HT’02 60

[3] Duncan Martin and Helen Ashman. Goate: An infrastructure for new Web linking. David
Millard, Jörg M. Haake, Sigi Reich (Eds.), Proceedings of the International Workshop on
Open Hypermedia Systems Core Concepts & Research Directions, Pre-Conference
Workshop at the ACM 13th International Conference on Hypertext and Hypermedia (HT’02),
(University of Maryland, College Park, MD 20742, USA, June 12th, 2002), pp. 19-25.
Informatik Berichte, FernUniversität Hagen: Hagen.

[4] David E. Millard, Danius T. Michaelides, David De Roure, Mark J. Weal. Beyond the
Traditional Domains of Hypermedia. David Millard, Jörg M. Haake, Sigi Reich (Eds.),
Proceedings of the International Workshop on Open Hypermedia Systems Core Concepts
& Research Directions, Pre-Conference Workshop at the ACM 13th International
Conference on Hypertext and Hypermedia (HT’02), (University of Maryland, College Park,
MD 20742, USA, June 12th, 2002), pp. 26-32. Informatik Berichte, FernUniversität Hagen:
Hagen.

[5] Jessica Rubart, Weigang Wang, Jörg M. Haake. Arguments for Open Structure Execution
Service. David Millard, Jörg M. Haake, Sigi Reich (Eds.), Proceedings of the International
Workshop on Open Hypermedia Systems Core Concepts & Research Directions, Pre-
Conference Workshop at the ACM 13th International Conference on Hypertext and
Hypermedia (HT’02), (University of Maryland, College Park, MD 20742, USA, June 12th,
2002), pp. 45-51. Informatik Berichte, FernUniversität Hagen: Hagen.

[6] Sanjay M. Vivekanandan, Kenneth K. K. Tso, Mark K. Thompson, David C. De Roure.
Asynchronous Linking in a Service-Oriented Architecture. David Millard, Jörg M. Haake,
Sigi Reich (Eds.), Proceedings of the International Workshop on Open Hypermedia
Systems Core Concepts & Research Directions, Pre-Conference Workshop at the ACM 13th
International Conference on Hypertext and Hypermedia (HT’02), (University of Maryland,
College Park, MD 20742, USA, June 12th, 2002), pp. 33-38. Informatik Berichte,
FernUniversität Hagen: Hagen.

[7] Sanjay M. Vivekanandan, David C. De Roure. Workflow Description for Open Hypermedia
Systems. David Millard, Jörg M. Haake, Sigi Reich (Eds.), Proceedings of the International
Workshop on Open Hypermedia Systems Core Concepts & Research Directions, Pre-
Conference Workshop at the ACM 13th International Conference on Hypertext and
Hypermedia (HT’02), (University of Maryland, College Park, MD 20742, USA, June 12th,
2002), pp. 52-56. Informatik Berichte, FernUniversität Hagen: Hagen.

