
  

Numerical Methods for Integration 
and Differentiation

● Outline:
● Motivation
● Revisiting Taylor series
● Calculating derivatives numerically
● Calculating integrals numerically

– Square and Trapezoid methods
– Recursive Trapezoid and Romberg Algorithm



  

Motivation

● Taylor series ... important concept in numerical 
approximation, used in many algorithms, so 
need to be familiar with it.

● Same with numerical differentiation, e.g., 
needed for
● Optimization algorithms
● Finding roots of (non-linear) equations
● Numerical integration of differential equations

● Analytical calculations often result in integrals 
that cannot be computed analytically
● Numerical integration schemes



  

Taylor Series
● Given a smooth function f(x), we can expand it 

around a point c

● This is the Taylor series of f at point c. Loosely: “if 
x is close to c the series converges rapidly and 
slowly (or not at all) if x is far away from c”

● Convergence: 

f (x )=f (c)+ f '(c)( x−c )+
1
2!

f ' ' (c)(x−c )
2
+

1
3 !

f ' ' '(x−c )
3
+...

=∑k =0

∞ 1
k !

f
(k)

(c)(x−c)
k

En+1= f (x)−f n(x )=∑k=n+1

∞ f (k)
(c)(x−c)k

k !
=

f (n+1)
(ζ)( x−c )

n+1

(n+1)!

with ζ some value between x and c



  

Some familiar examples

● Computers calculate many functions like this, 
e.g.

                     for some large N.

ex
=∑k=0

∞ x k

k !
=1+ x+

x2

2 !
+

x3

3 !
+... , ∣x∣<∞

sin( x)=∑k =0

∞

(−1)k
x2k+1

(2k+1)!
=x−

x3

3 !
+

x5

5 !
−... , ∣x∣<∞

cos (x )=∑k=0

∞

(−1)k x2k

(2k)!
=1−x−

x2

2 !
+

x4

4 !
−... , ∣x∣<∞

1
1−x

=∑k=0

∞

x
k
=1+x+x

2
+x

3
+... ∣x∣<1

ex
≈∑k =0

N xk
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Example

● Calculate e^1 to 6 digit accuracy
● Answer:

e=e
1
=1+1+

1
2!

+
1
3 !

+
1
4 !

+
1

5 !
+...

1
2!

=0.5,
1
3 !

=0.166667,
1

4 !
=0.041667, ... ,

1
9 !

=0.0000027

next one gives corrections
<0.000001

e≈1+1+
1
2!

+...+
1

9 !
=2.71828



  

Numerical Differentiation

● Want to have a numerical approximation of f'(x), f''(x
), etc.

● Reminder:
● If we set n=0 in Taylor's theorem we have the 

“Mean-value theorem”:

● Can use this to approxi-

mate f' if interval (a,b)

is small

f ' (x )= limh→0

f (x+h)−f (x )

h

f (a)−f (b)=(b−a) f ' (ζ) f ' (ζ)=
f (b)−f (a)

b−a



  

Finite Difference Schemes

f ' (x )≈
1
h
( f ( x+h)− f (x ))

f ' (x )≈
1
h
( f ( x)−f (x−h))

f ' (x )≈
1

2h
( f (x+h)−f (x−h))

Forward difference (3)

Backward difference (2)

Central difference (1)



  

What about the errors?

● From Taylor:

f (x+h)=f (x)+hf ' ( x)+
1
2
h

2
f ' '( x)+

1
6

h
3
f ' ' ' (x )+O(h

4
)

f (x−h)=f (x )−hf '(x )+
1
2
h

2
f ' '(x )−

1
6

h
3
f ' ' '( x)+O(h

4
)

1
h
(f (x+h)−f (x))=f ' (x)+

1
2

h f ' ' (x )+ ...

... both first order in h (error prop. to h)

1
h
(f (x )− f (x−h))=f '(x )−

1
2

h f ' ' (x)+ ...

1
2h

( f (x+h)− f (x−h))= f ' (x )+
1
6

h
2
f ' ' ' (x)+...

... second order in h (i.e. more accurate)



  

How to calculate f''?

● Could just calculate the derivative of the first 
derivative ...

● Better:

f (x+h)=f (x)+hf ' ( x)+
1
2
h

2
f ' '( x)+

1
6

h
3
f ' ' ' (x )+

1
24

h
4
f
(4 )

(x)+ ...

f (x−h)= f (x )−hf '(x )+
1
2
h

2
f ' '(x )−

1
6

h
3
f ' ' '( x)+

1
24

h
4
f

(4 )
(x )+...

f ' ' (x )+
1
12

h
2
f

(4 )
=

1

h2 ( f ( x+h)−2f (x )+f (x−h))

f ' ' (x )≈
1

h2 ( f ( x+h)−2f (x )+ f (x−h))

... second order in h



  

Determining Truncation Errors

● Why bother? We have fast computers and can 
use small values of h, so no problem?
● Problems with number representations in 

computers (more later)
● Often these approximations are iterated in 

numerical schemes, so errors accumulate fast

● Truncation error calculations might be quite 
confusing, but idea is simple:
● Compare finite difference approximation to full 

Taylor approximation, difference between both 
gives error terms and order of the method.



  

Multivariate Taylor

● A few times later in the module we will have to 
deal with expansions of scalar functions of 
multiple variables f(x,y,z,...)

● To write this in nice form, introduce multi-
indices

● Then:

α∈Nn ,α=(α1,. .. ,αn) ,∣α∣=∑ j=1

n
α j

f ( x⃗+ h⃗)= lim k→∞∑∣α∣≤ k

1
∣α∣!

D
α
f ( x⃗ ) h⃗

α

α !=α1 !⋅α2!⋅...⋅αn ! x⃗α
=x1

α 1⋅x2
α2⋅...⋅xn

α n

Dα f =
∂∣α∣f

∂ x1
α 1∂ x2

α2 ...∂ xn
α n



  

Example

● Taylor

● Expand f(x,y) up to second order

● Later in the module mostly the linear term will 
matter ...

f ( x⃗+ h⃗)= lim k→∞∑∣α∣≤ k

1
∣α∣!

D
α
f ( x⃗ ) h⃗

α

f (x+h1, y+h2)≈ f (x , y )+∂x f h1+∂ y f h2+
1
2 !

∂ x
2
f h1

2
+∂ x∂ yh1h2+

1
2 !

∂ y
2
h2

2

α=0 α=1 α=2



  

Numerical Integration

● Given f(x) in the interval [a,b] we want to find an 
approximation for

● Main strategy:
● Cut [a,b] into smaller sub-intervals
● In each interval i, approximate f(x) by a polynomial p i

● Integrate the polynomials analytically and sum up 
their contributions

I ( f )=∫a

b
f ( x)dx



  

First Idea

● Approximate f by a constant for each sub-
interval -> pi(x )=f (x i)=f i



  

First Idea

● Each interval  
● Adding and using equidistant intervals

● Error (roughly):
● Approximation error per for f is ~ h
● After integration ~ h2

● Summing up order 1/h intervals: E~h
● Maybe we can do better without much more 

computational effort?

∫xi

xi+1

pi( x)dx=∫x i

x i+1

f idx=f i( x i+1− xi)

∫a

b
f ( x)dx≈∑i=0

n−1
f i(x i+1−x i)

h=
b−a
n

, x i=x0+(i−1)h ∫a

b
f ( x)dx≈h∑i=0

n−1
f i



  

Trapezoid Rule

● On interval [x
i
,x

i+1
] interpolate f(x) by a linear 

polynomial that connects end points: f(x
i
)=p

i
(x

i
), 

f(x
i+1

)=p
i
(x

i+1
)

pi(x )=f (x i)+(x−x i)
f (x i+ 1)−f (x i)

x i+1− x i



  

● Can now integrate the p(x)'s

which is just the area of the trapezium ...

∫xi

xi+1

pi( x)dx=[ f (x i) x− xi x
f (x i+1)−f (x i)

x i+1−x i

+x2
/2

f ( x i+1)− f (x i)

x i+1−x i
]x i

x i+1

...

=
1
2
( f ( x i+1)+ f (x i))(x i+1−x i)



  

Trapezoid (3)

● Adding up all intervals

● Using equidistant intervals

∫a

b
f ( x)dx≈∑i=0

n−1 1
2
( f (x i+ 1)+ f (x i))( x i+1− xi)

h=
b−a
n

, x i=x0+(i−1)hh=
b−a
n

, x i=x0+(i−1)h

∫a

b
f ( x)dx≈∑i=0

n−1 h
2
( f (x i+1)+ f ( xi))

∫a

b
f ( x)dx≈h[ 1

2
f (x0)+∑i=1

n−1
f (x i)+

1
2

f ( xn)] :=T ( f ;h)



  

Error Estimate

● Only approximate functions over the intervals, 
hence there is an systematic truncation error

● Error from linear approximation of f per interval
● Integration -> 
● Summing up order of 1/h E's ->

E( f ;h)=I ( f )−T ( f ;h)=∑i=0

n−1

∫x i

x i+1

[ f (x )−pi
( x)]

=∑i=0

n−1
E i( f ;h)

∝h2

Ei ∝h3

E∝h2



  

Simpson's Rule

● So far, approximated f by 
● A constant -> E~h
● A linear function -> E~h2

● Maybe try a quadratic function -> Simpson's rule



  

Simpson's Rule (2)

● Won't go into any technical details about this, 
but for equidistant intervals one has

● One can show that Simpson's rule is 4th order, 
i.e.

I≈S ( f ;h)=
h
3∑i=0

n−1
[ f ( x2i)+4 f (x2i+1)+ f ( x2i+2)]

E∝h4



  

Recursive Trapezoid

● A way to control truncation error without 
unnecessary computations

● Divide [a,b] into 2n sub-intervals and evaluate 
Trapezoid rule for                     and

● Apply Trapezoid rule

hn=2−n(b−a) hn+1=hn/2



  

Recursive Trapezoid (2)

● For h
n
:

● For h
n+1

:

● One can show ...

● Advantages
● Keep computation at level n. If not accurate enough 

-> add another level
● Don't need to re-evaluate at points we have already 

evaluated before

T (f ; hn)=hn[ f (a)+ f (b)

2
+∑i=1

2n
−1

f (a+ihn)]

T (f ; hn+1)=hn+1[ f (a)+ f (b)

2
+∑i=1

2n+1
−1

f (a+ ihn+1) ]

T (f ; hn+1)=
1
2

T ( f ;hn)+hn+1∑ j=0

2n
−1

f (a+(2j+1)hn+1)



  

Romberg Method

● Idea:
● Say we have calculated T(f;h), T(f;h/2), T(f;h/4), ...
● Combine these numbers to get better approximation?

● One can show that

only depends on even powers of h

E( f ;h)=I ( f )−T ( f ;h)=a2 h
2
+a4 h

4
+a6 h

6
+...

E( f ;h /2)=I ( f )−T ( f ;h/2)=a2(h/2)
2
+a4(h/2)

4
+a6(h /2)6

+ ...

(1)

(2)



  

Romberg (2)

● Re-arranging  for I yields:

● Multiplying (2') by 4 and subtracting (1'):

● U(h) is fourth order accuracy!
● This is called Richardson extrapolation

I ( f )=T ( f ;h)+a2h
2
+a4 h

4
+a6 h

6
+ ...

I ( f )=T ( f ;h/2)+a2(h /2)2
+a4 (h /2)4

+a6(h/2)
6
+...

(1')

(2')

3 I ( f )=4T ( f ;h/2)−T ( f ;h)+a '4 h4
+...

I ( f )=4 /3T ( f ;h /2)−T (f ; h)⏟
U (h )

+a ' ' 4 h
4+...



  

Romberg (3)

● Obviously, we can continue with this idea:

● To cancel the fourth order term we multiply (4) 
by 24 and subtract (3)

and 
● And so on ... yields the Romberg Algorithm

I ( f )=U (h)+a ' ' 4 h
4
+a ' '6 h

6
+...

I ( f )=U (h/2)+a ' '4 (h /2)
4
+a ' ' 6(h/2)

6
+...

(3)

(4)

V (h)=
24 U (h/2)−U (h)

24−1
=U (h /2)+

U (h/2)−U (h)

24−1

I ( f )=V (h)+a ' ' ' 6 h
6
+ ...



  

Romberg Algorithm

● Set H=b-a and define

(e.g. calculated by recursive Trapezoid)
● Then:

● and

R(0,0)=T ( f ; H )

R(1,0)=T ( f ; H /2)
...

R(1,0)=T ( f ; H /2n)

R(n ,m)=R(n ,m−1)+
R(n ,m−1)−R (n−1,m−1)

22m−1

I ( f )=R (m ,m)+O(h2 (m+1)
)



  

Romberg Triangle

● Recursive calculation of the R(n,m)'s ...



  

More Ideas ...

● “Mesh” should be finer when f changes a lot
● -> adaptive methods

● Gaussian quadrature:
● All methods somehow approximate integrals via

● Squares 
● Trapezoid 
● Could also optimize the xi and Ai to improve 

precision
● Gaussian quadrature does this tuning these 

parametes to get integrals for polynomials of order 
m right

∫a

b
f ( x)dx≈A0 f (x0)+A1 f (x1)+...+An f (xn)

x0=a , x1=b , A0=A1=1

x0=a , A0=1



  

Summary

● What is important to remember:
● Taylor series and how to use them to estimate 

truncation errors
● The idea of numerical differentiation
● The idea of basic schemes for numerical 

integration, say Trapezoid
● More advanced stuff is nice to remember but can 

be looked up when needed
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