Numerical Methods for Integration and Differentiation

• Outline:

- Motivation
- Revisiting Taylor series
- Calculating derivatives numerically
- Calculating integrals numerically
 - Square and Trapezoid methods
 - Recursive Trapezoid and Romberg Algorithm

Motivation

- Taylor series ... important concept in numerical approximation, used in many algorithms, so need to be familiar with it.
- Same with numerical differentiation, e.g., needed for
 - Optimization algorithms
 - Finding roots of (non-linear) equations
 - Numerical integration of differential equations
- Analytical calculations often result in integrals that cannot be computed analytically
 - Numerical integration schemes

Taylor Series

 Given a smooth function f(x), we can expand it around a point c

$$f(x) = f(c) + f'(c)(x-c) + \frac{1}{2!}f''(c)(x-c)^{2} + \frac{1}{3!}f'''(x-c)^{3} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}$$

- This is the Taylor series of f at point c. Loosely: "if x is close to c the series converges rapidly and slowly (or not at all) if x is far away from c"
- Convergence:

$$E_{n+1} = f(x) - f_n(x) = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(c)(x-c)^k}{k!} = \frac{f^{(n+1)}(\zeta)(x-c)^{n+1}}{(n+1)!}$$

with ζ some value between x and c

Some familiar examples

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, |x| < \infty$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots, |x| < \infty$$

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!} = 1 - x - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots, |x| < \infty$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots |x| < 1$$

 Computers calculate many functions like this, e.g.

 $e^{x} \approx \sum_{k=0}^{N} \frac{x^{k}}{k!}$ for some large N.

Example

- Calculate e^1 to 6 digit accuracy
- Answer:

$$e = e^{1} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$$

$$\frac{1}{2!} = 0.5, \frac{1}{3!} = 0.166667, \frac{1}{4!} = 0.041667, \dots, \frac{1}{9!} = 0.0000027$$

next one gives corrections <0.000001

$$\rightarrow e \approx 1+1+\frac{1}{2!}+...+\frac{1}{9!}=2.71828$$

Numerical Differentiation

- Want to have a numerical approximation of f'(x), f''(x), etc.
- Reminder: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- If we set n=0 in Taylor's theorem we have the "Mean-value theorem":

$$f(a)-f(b)=(b-a)f'(\zeta) \longrightarrow f'(\zeta)=\frac{f(b)-f(a)}{b-a}$$

 Can use this to approximate f' if interval (a,b) is small

Finite Difference Schemes

$$f'(x) \approx \frac{1}{h} (f(x+h) - f(x))$$
 \longrightarrow Forward difference (3)
 $f'(x) \approx \frac{1}{h} (f(x) - f(x-h))$ \longrightarrow Backward difference (2)

$$f'(x) \approx \frac{1}{2h} (f(x+h) - f(x-h))$$
 \longrightarrow Central difference (1)

What about the errors?

From Taylor:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{6}h^3f'''(x) + O(h^4)$$

$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^2f''(x) - \frac{1}{6}h^3f'''(x) + O(h^4)$$

$$\longrightarrow \frac{1}{h}(f(x+h)-f(x))=f'(x)+\frac{1}{2}hf''(x)+...$$

$$\longrightarrow \frac{1}{h}(f(x)-f(x-h))=f'(x)-\frac{1}{2}hf''(x)+...$$

... both first order in h (error prop. to h)

$$\rightarrow \frac{1}{2h} (f(x+h) - f(x-h)) = f'(x) + \frac{1}{6}h^2f'''(x) + \dots$$

... second order in h (i.e. more accurate)

How to calculate f"?

- Could just calculate the derivative of the first derivative ...
- Better:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^{2}f''(x) + \frac{1}{6}h^{3}f'''(x) + \frac{1}{24}h^{4}f^{(4)}(x) + \dots$$

$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^{2}f''(x) - \frac{1}{6}h^{3}f'''(x) + \frac{1}{24}h^{4}f^{(4)}(x) + \dots$$

$$f''(x) + \frac{1}{12}h^{2}f^{(4)} = \frac{1}{h^{2}}(f(x+h) - 2f(x) + f(x-h))$$

$$f''(x) \approx \frac{1}{h^{2}}(f(x+h) - 2f(x) + f(x-h))$$

... second order in h

Determining Truncation Errors

- Why bother? We have fast computers and can use small values of h, so no problem?
 - Problems with number representations in computers (more later)
 - Often these approximations are iterated in numerical schemes, so errors accumulate fast
- Truncation error calculations might be quite confusing, but idea is simple:
 - Compare finite difference approximation to full Taylor approximation, difference between both gives error terms and order of the method.

Multivariate Taylor

- A few times later in the module we will have to deal with expansions of scalar functions of multiple variables f(x,y,z,...)
- To write this in nice form, introduce multiindices $\alpha \in N^n$, $\alpha = (\alpha_1, ..., \alpha_n)$, $|\alpha| = \sum_{i=1}^n \alpha_i$

$$\alpha! = \alpha_1! \cdot \alpha_2! \cdot \dots \cdot \alpha_n! \quad \overrightarrow{x}^{\alpha} = x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot \dots \cdot x_n^{\alpha_n}$$

$$D^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}$$

• Then:

$$f(\vec{x} + \vec{h}) = \lim_{k \to \infty} \sum_{|\alpha| \le k} \frac{1}{|\alpha|!} D^{\alpha} f(\vec{x}) \vec{h}^{\alpha}$$

Example

Taylor

$$f(\vec{x} + \vec{h}) = \lim_{k \to \infty} \sum_{|\alpha| \le k} \frac{1}{|\alpha|!} D^{\alpha} f(\vec{x}) \vec{h}^{\alpha}$$

Expand f(x,y) up to second order

$$f(x+h_1,y+h_2) \approx f(x,y) + \partial_x f h_1 + \partial_y f h_2 + \frac{1}{2!} \partial_x^2 f h_1^2 + \partial_x \partial_y h_1 h_2 + \frac{1}{2!} \partial_y^2 h_2^2$$

$$\alpha = 0 \qquad \alpha = 1 \qquad \alpha = 2$$

 Later in the module mostly the linear term will matter ...

Numerical Integration

 Given f(x) in the interval [a,b] we want to find an approximation for

$$I(f) = \int_{a}^{b} f(x) dx$$

- Main strategy:
 - Cut [a,b] into smaller sub-intervals
 - In each interval i, approximate f(x) by a polynomial pⁱ
 - Integrate the polynomials analytically and sum up their contributions

First Idea

• Approximate f by a constant for each subinterval -> $p_i(x)=f(x_i)=f_i$

First Idea

• Each interval
$$\int_{x_i}^{x_{i+1}} p_i(x) dx = \int_{x_i}^{x_{i+1}} f_i dx = f_i(x_{i+1} - x_i)$$

Adding and using equidistant intervals

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f_{i}(x_{i+1} - x_{i})$$

$$h = \frac{b-a}{n}, x_i = x_0 + (i-1)h \longrightarrow \int_a^b f(x) dx \approx h \sum_{i=0}^{n-1} f_i$$

- Error (roughly):
 - Approximation error per for f is ~ h
 - After integration ~ h²
 - Summing up order 1/h intervals: E~h
 - Maybe we can do better without much more computational effort?

Trapezoid Rule

• On interval $[x_i, x_{i+1}]$ interpolate f(x) by a linear polynomial that connects end points: $f(x_i) = p_i(x_i)$, $f(x_{i+1}) = p_i(x_{i+1})$

$$p_i(x) = f(x_i) + (x - x_i) \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Can now integrate the p(x)'s

$$\int_{x_{i}}^{x_{i+1}} p_{i}(x) dx = \left[f(x_{i}) x - x_{i} x \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}} + x^{2} / 2 \frac{f(x_{i+1}) - f(x_{i})}{x_{i+1} - x_{i}} \right]_{x_{i}}^{x_{i+1}}$$

• • •

$$= \frac{1}{2} (f(x_{i+1}) + f(x_i))(x_{i+1} - x_i)$$

which is just the area of the trapezium ...

Trapezoid (3)

Adding up all intervals

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} \frac{1}{2} (f(x_{i+1}) + f(x_{i})) (x_{i+1} - x_{i})$$

Using equidistant intervals

$$h = \frac{b-a}{n}, x_i = x_0 + (i-1)h$$

$$\int_a^b f(x) dx \approx \sum_{i=0}^{n-1} \frac{h}{2} (f(x_{i+1}) + f(x_i))$$

$$\int_a^b f(x) dx \approx h \left[\frac{1}{2} f(x_0) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} f(x_n) \right] := T(f; h)$$

Error Estimate

 Only approximate functions over the intervals, hence there is an systematic truncation error

$$E(f;h) = I(f) - T(f;h) = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} [f(x) - p^i(x)]$$
$$= \sum_{i=0}^{n-1} E_i(f;h)$$

- Error from linear approximation of f per interval $\propto h^2$
- Integration -> $E_i \propto h^3$
- Summing up order of 1/h E's -> $E \propto h^2$

Simpson's Rule

- So far, approximated f by
 - A constant -> E~h
 - A linear function -> E~h²
 - Maybe try a quadratic function -> Simpson's rule

Simpson's Rule (2)

 Won't go into any technical details about this, but for equidistant intervals one has

$$I \approx S(f;h) = \frac{h}{3} \sum_{i=0}^{n-1} [f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2})]$$

• One can show that Simpson's rule is 4^{th} order, i.e. $E \propto h^4$

Recursive Trapezoid

- A way to control truncation error without unnecessary computations
- Divide [a,b] into 2^n sub-intervals and evaluate Trapezoid rule for $h_n=2^{-n}(b-a)$ and $h_{n+1}=h_n/2$

Apply Trapezoid rule

Recursive Trapezoid (2)

• For
$$h_n$$
: $T(f; h_n) = h_n \left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{2^n - 1} f(a + ih_n) \right]$

• For
$$h_{n+1}$$
: $T(f; h_{n+1}) = h_{n+1} \left[\frac{f(a) + f(b)}{2} + \sum_{i=1}^{2^{n+1} - 1} f(a + ih_{n+1}) \right]$

One can show ...

$$T(f;h_{n+1}) = \frac{1}{2}T(f;h_n) + h_{n+1}\sum_{j=0}^{2^n-1} f(a+(2j+1)h_{n+1})$$

- Advantages
 - Keep computation at level n. If not accurate enough
 -> add another level
 - Don't need to re-evaluate at points we have already evaluated before

Romberg Method

- Idea:
 - Say we have calculated T(f;h), T(f;h/2), T(f;h/4), ...
 - Combine these numbers to get better approximation?
- One can show that

$$E(f;h) = I(f) - T(f;h) = a_2 h^2 + a_4 h^4 + a_6 h^6 + \dots$$
 (1)

only depends on even powers of h

$$- E(f;h/2) = I(f) - T(f;h/2) = a_2(h/2)^2 + a_4(h/2)^4 + a_6(h/2)^6 + \dots$$

Romberg (2)

Re-arranging for I yields:

$$I(f) = T(f;h) + a_2h^2 + a_4h^4 + a_6h^6 + \dots$$
 (1')

$$I(f) = T(f;h/2) + a_2(h/2)^2 + a_4(h/2)^4 + a_6(h/2)^6 + \dots$$
 (2')

Multiplying (2') by 4 and subtracting (1'):

$$3I(f) = 4T(f;h/2) - T(f;h) + a'_{4}h^{4} + \dots$$

$$I(f) = \underbrace{4/3T(f;h/2) - T(f;h)}_{U(h)} + a''_{4}h^{4} + \dots$$

- U(h) is fourth order accuracy!
- This is called Richardson extrapolation

Romberg (3)

Obviously, we can continue with this idea:

$$I(f) = U(h) + a''_{4}h^{4} + a''_{6}h^{6} + \dots$$
 (3)

$$I(f) = U(h/2) + a''_{4}(h/2)^{4} + a''_{6}(h/2)^{6} + \dots$$
 (4)

 To cancel the fourth order term we multiply (4) by 2⁴ and subtract (3)

$$V(h) = \frac{2^{4}U(h/2) - U(h)}{2^{4} - 1} = U(h/2) + \frac{U(h/2) - U(h)}{2^{4} - 1}$$

and
$$I(f)=V(h)+a'''_{6}h^{6}+...$$

And so on ... yields the Romberg Algorithm

Romberg Algorithm

Set H=b-a and define

$$R(0,0) = T(f;H)$$

 $R(1,0) = T(f;H/2)$
...

$$R(1,0) = T(f; H/2^n)$$

(e.g. calculated by recursive Trapezoid)

• Then:

$$R(n,m)=R(n,m-1)+\frac{R(n,m-1)-R(n-1,m-1)}{2^{2m}-1}$$

and

$$I(f) = R(m,m) + O(h^{2(m+1)})$$

Romberg Triangle

Recursive calculation of the R(n,m)'s ...

More Ideas ...

- "Mesh" should be finer when f changes a lot
 - -> adaptive methods
- Gaussian quadrature:
 - All methods somehow approximate integrals via

$$\int_{a}^{b} f(x) dx \approx A_{0} f(x_{0}) + A_{1} f(x_{1}) + ... + A_{n} f(x_{n})$$

- Squares $x_0 = a$, $A_0 = 1$
- Trapezoid $x_0=a$, $x_1=b$, $A_0=A_1=1$
- Could also optimize the xi and Ai to improve precision
- Gaussian quadrature does this tuning these parametes to get integrals for polynomials of order m right

Summary

- What is important to remember:
 - Taylor series and how to use them to estimate truncation errors
 - The idea of numerical differentiation
 - The idea of basic schemes for numerical integration, say Trapezoid
 - More advanced stuff is nice to remember but can be looked up when needed