Numerical Methods for Integration and Differentiation

- Outline:
- Motivation
- Revisiting Taylor series
- Calculating derivatives numerically
- Calculating integrals numerically
- Square and Trapezoid methods
- Recursive Trapezoid and Romberg Algorithm

Motivation

- Taylor series ... important concept in numerical approximation, used in many algorithms, so need to be familiar with it.
- Same with numerical differentiation, e.g., needed for
- Optimization algorithms
- Finding roots of (non-linear) equations
- Numerical integration of differential equations
- Analytical calculations often result in integrals that cannot be computed analytically
- Numerical integration schemes

Taylor Series

- Given a smooth function $f(x)$, we can expand it around a point c

$$
\begin{aligned}
f(x) & =f(c)+f^{\prime}(c)(x-c)+\frac{1}{2!} f^{\prime \prime}(c)(x-c)^{2}+\frac{1}{3!} f^{\prime \prime} \prime(x-c)^{3}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}
\end{aligned}
$$

- This is the Taylor series of f at point c. Loosely: "if x is close to c the series converges rapidly and slowly (or not at all) if x is far away from c"
- Convergence:

$$
E_{n+1}=f(x)-f_{n}(x)=\sum_{k=n+1}^{\infty} \frac{f^{(k)}(c)(x-c)^{k}}{k!}=\frac{f^{(n+1)}(\zeta)(x-c)^{n+1}}{(n+1)!}
$$

with ζ some value between x and c

Some familiar examples

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots,|x|<\infty \\
\sin (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 \mathrm{k}+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots,|x|<\infty \\
\cos (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 \mathrm{k}}}{(2 \mathrm{k})!}=1-x-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots,|x|<\infty \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots \quad|x|<1
\end{aligned}
$$

- Computers calculate many functions like this, e.g.
$e^{x} \approx \sum_{k=0}^{N} \frac{x^{k}}{k!} \quad$ for some large N.

Example

- Calculate $\mathrm{e}^{\wedge} 1$ to 6 digit accuracy
- Answer:

$$
\begin{aligned}
& e=e^{1}=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots \\
& \frac{1}{2!}=0.5, \frac{1}{3!}=0.166667, \frac{1}{4!}=0.041667, \ldots, \frac{1}{9!}=0.0000027
\end{aligned}
$$

next one gives corrections
<0.000001
$\rightarrow e \approx 1+1+\frac{1}{2!}+\ldots+\frac{1}{9!}=2.71828$

Numerical Differentiation

- Want to have a numerical approximation of $f^{\prime}(x), f^{\prime \prime}(x$), etc.
- Reminder: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- If we set $\mathrm{n}=0$ in Taylor's theorem we have the "Mean-value theorem":

$$
f(a)-f(b)=(b-a) f^{\prime}(\zeta) \rightarrow f^{\prime}(\zeta)=\frac{f(b)-f(a)}{b-a}
$$

- Can use this to approximate f^{\prime} if interval (a, b) is small

Finite Difference Schemes

$$
\begin{array}{ll}
f^{\prime}(x) \approx \frac{1}{h}(f(x+h)-f(x)) & \rightarrow \text { Forward difference (3) } \\
f^{\prime}(x) \approx \frac{1}{h}(f(x)-f(x-h)) & \rightarrow \text { Backward difference (2) } \\
f^{\prime}(x) \approx \frac{1}{2 h}(f(x+h)-f(x-h)) \rightarrow \text { Central difference (1) }
\end{array}
$$

What about the errors?

- From Taylor:

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)-\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& -\frac{1}{h}(f(x+h)-f(x))=f^{\prime}(x)+\frac{1}{2} h f^{\prime \prime}(x)+\ldots \\
& -\frac{1}{h}(f(x)-f(x-h))=f^{\prime}(x)-\frac{1}{2} h f^{\prime \prime}(x)+\ldots
\end{aligned}
$$

... both first order in h (error prop. to h)
$\rightarrow \frac{1}{2 h}(f(x+h)-f(x-h))=f^{\prime}(x)+\frac{1}{6} h^{2} f^{\prime \prime \prime}(x)+\ldots$
... second order in h (i.e. more accurate)

How to calculate f"?

- Could just calculate the derivative of the first derivative ...
- Better:

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{24} h^{4} f^{(4)}(x)+\ldots \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)-\frac{1}{6} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{24} h^{4} f^{(4)}(x)+\ldots
\end{aligned}
$$

$$
\longrightarrow f^{\prime \prime}(x)+\frac{1}{12} h^{2} f^{(4)}=\frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))
$$

$$
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}(f(x+h)-2 f(x)+f(x-h))
$$

... second order in h

Determining Truncation Errors

- Why bother? We have fast computers and can use small values of h, so no problem?
- Problems with number representations in computers (more later)
- Often these approximations are iterated in numerical schemes, so errors accumulate fast
- Truncation error calculations might be quite confusing, but idea is simple:
- Compare finite difference approximation to full Taylor approximation, difference between both gives error terms and order of the method.

Multivariate Taylor

- A few times later in the module we will have to deal with expansions of scalar functions of multiple variables $f(x, y, z, \ldots)$
- To write this in nice form, introduce multiindices $\alpha \in N^{n}, \alpha=\left(\alpha_{1, .}, \alpha_{n}\right),|\alpha|=\sum_{j=1}^{n} \alpha_{j}$

$$
\begin{aligned}
& \alpha!=\alpha_{1}!\cdot \alpha_{2}!\cdot \ldots \cdot \alpha_{n}!\quad \overrightarrow{x^{\alpha}}=x_{1}^{\alpha_{1}} \cdot x_{2}^{\alpha_{2}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \\
& D^{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}}
\end{aligned}
$$

- Then:

$$
f(\vec{x}+\vec{h})=\lim _{k \rightarrow \infty} \sum_{|\alpha| \leq k} \frac{1}{|\alpha|!} D^{\alpha} f(\vec{x}) \vec{h}^{\alpha}
$$

Example

- Taylor

$$
f(\vec{x}+\vec{h})=\lim _{k \rightarrow \infty} \sum_{|\alpha| \leq k} \frac{1}{|\alpha|!} D^{\alpha} f(\vec{x}) \vec{h}^{\alpha}
$$

- Expand $f(x, y)$ up to second order

$$
f\left(x+h_{1}, y+h_{2}\right) \approx f(x, y)+\partial_{x} f h_{1}+\partial_{y} f h_{2}+\frac{1}{2!} \partial_{x}^{2} f h_{1}^{2}+\partial_{x} \partial_{y} h_{1} h_{2}+\frac{1}{2!} \partial_{y}^{2} h_{2}^{2}
$$

- Later in the module mostly the linear term will matter ...

Numerical Integration

- Given $f(x)$ in the interval $[a, b]$ we want to find an approximation for

$$
I(f)=\int_{a}^{b} f(x) d x
$$

- Main strategy:
- Cut $[a, b]$ into smaller sub-intervals
- In each interval i, approximate $f(x)$ by a polynomial p^{i}
- Integrate the polynomials analytically and sum up their contributions

First Idea

- Approximate f by a constant for each subinterval -> $p_{i}(x)=f\left(x_{i}\right)=f_{i}$

First Idea

- Each interval $\int_{x_{i}}^{x_{t+1}} p_{i}(x) d x=\int_{x_{i}}^{x_{i+1}} f_{i} d x=f_{i}\left(x_{i+1}-x_{i}\right)$
- Adding and using equidistant intervals

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} f_{i}\left(x_{i+1}-x_{i}\right)
$$

$h=\frac{b-a}{n}, x_{i}=x_{0}+(i-1) h \longrightarrow \int_{a}^{b} f(x) d x \approx h \sum_{i=0}^{n-1} f_{i}$

- Error (roughly):
- Approximation error per for f is $\sim h$
- After integration $\sim h^{2}$
- Summing up order 1/h intervals: E~h
- Maybe we can do better without much more computational effort?

Trapezoid Rule

- On interval $\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right]$ interpolate $\mathrm{f}(\mathrm{x})$ by a linear polynomial that connects end points: $f\left(x_{i}\right)=p_{i}\left(x_{i}\right)$, $f\left(X_{i+1}\right)=p_{i}\left(X_{i+1}\right)$
$\longrightarrow p_{i}(x)=f\left(x_{i}\right)+\left(x-x_{i}\right) \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}$

- Can now integrate the $p(x)$'s

$$
\begin{aligned}
& \int_{x_{i}}^{x_{i+1}} p_{i}(x) d x=\left[f\left(x_{i}\right) x-x_{i} x \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}+x^{2} / 2 \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}\right]_{x_{i}}^{x_{i+1}} \\
& \ldots \\
&=\frac{1}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

which is just the area of the trapezium ...

Trapezoid (3)

- Adding up all intervals

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \frac{1}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)\left(x_{i+1}-x_{i}\right)
$$

- Using equidistant intervals

$$
\begin{aligned}
& h=\frac{b-a}{n}, x_{i}=x_{0}+(i-1) h \\
& \int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} \frac{h}{2}\left(f\left(x_{i+1}\right)+f\left(x_{i}\right)\right) \\
& \int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right]:=T(f ; h)
\end{aligned}
$$

Error Estimate

- Only approximate functions over the intervals, hence there is an systematic truncation error

$$
\begin{aligned}
E(f ; h) & =I(f)-T(f ; h)=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}}\left[f(x)-p^{i}(x)\right] \\
& =\sum_{i=0}^{n-1} E_{i}(f ; h)
\end{aligned}
$$

- Error from linear approximation of f per interval $\propto h^{2}$
- Integration -> $E_{i} \propto h^{3}$
- Summing up order of $1 / \mathrm{h}$ E's -> $E \propto h^{2}$

Simpson's Rule

- So far, approximated f by
- A constant -> E~h
- A linear function -> E~h²
- Maybe try a quadratic function -> Simpson's rule

Simpson's Rule (2)

- Won't go into any technical details about this, but for equidistant intervals one has

$$
I \approx S(f ; h)=\frac{h}{3} \sum_{i=0}^{n-1}\left[f\left(x_{2 \mathrm{i}}\right)+4 f\left(x_{2 \mathrm{i}+1}\right)+f\left(x_{2 \mathrm{i}+2}\right)\right]
$$

- One can show that Simpson's rule is $4^{\text {th }}$ order, i.e. $E \propto h^{4}$

Recursive Trapezoid

- A way to control truncation error without unnecessary computations
- Divide [a,b] into 2^{n} sub-intervals and evaluate Trapezoid rule for $h_{n}=2^{-n}(b-a)$ and $h_{n+1}=h_{n} / 2$

- Apply Trapezoid rule

Recursive Trapezoid (2)

- For $h_{n}: \quad T\left(f ; h_{n}\right)=h_{n}\left[\frac{f(a)+f(b)}{2}+\sum_{i=1}^{2^{n}-1} f\left(a+i h_{n}\right)\right]$
- For $h_{n+1}: T\left(f ; h_{n+1}\right)=h_{n+1}\left[\frac{f(a)+f(b)}{2}+\sum_{i=1}^{2^{n+1}-1} f\left(a+i h_{n+1}\right)\right]$
- One can show ...

$$
T\left(f ; h_{n+1}\right)=\frac{1}{2} T\left(f ; h_{n}\right)+h_{n+1} \sum_{j=0}^{2^{n}-1} f\left(a+(2 \mathrm{j}+1) h_{n+1}\right)
$$

- Advantages
- Keep computation at level n. If not accurate enough -> add another level
- Don't need to re-evaluate at points we have already evaluated before

Romberg Method

- Idea:
- Say we have calculated $T(f ; h), T(f ; h / 2), T(f ; h / 4), \ldots$
- Combine these numbers to get better approximation?
- One can show that

$$
\begin{equation*}
E(f ; h)=I(f)-T(f ; h)=a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\ldots \tag{1}
\end{equation*}
$$

only depends on even powers of h

- $E(f ; h / 2)=I(f)-T(f ; h / 2)=a_{2}(h / 2)^{2}+a_{4}(h / 2)^{4}+a_{6}(h / 2)^{6}+\ldots$

Romberg (2)

- Re-arranging for I yields:

$$
\begin{align*}
& I(f)=T(f ; h)+a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\ldots \tag{1'}\\
& I(f)=T(f ; h / 2)+a_{2}(h / 2)^{2}+a_{4}(h / 2)^{4}+a_{6}(h / 2)^{6}+\ldots \tag{2'}
\end{align*}
$$

- Multiplying (2') by 4 and subtracting (1'):

$$
\begin{aligned}
& 3 I(f)=4 T(f ; h / 2)-T(f ; h)+a^{\prime}{ }_{4} h^{4}+\ldots \\
& I(f)=\underbrace{4 / 3 T(f ; h / 2)-T(f ; h)}_{U(h)}+a^{\prime \prime}{ }_{4} h^{4}+\ldots
\end{aligned}
$$

- $U(h)$ is fourth order accuracy!
- This is called Richardson extrapolation

Romberg (3)

- Obviously, we can continue with this idea:

$$
\begin{align*}
& I(f)=U(h)+a^{\prime}{ }_{4} h^{4}+a^{\prime}{ }_{6} h^{6}+\ldots \tag{3}\\
& I(f)=U(h / 2)+a^{\prime \prime}{ }_{4}(h / 2)^{4}+a^{\prime \prime}{ }_{6}(h / 2)^{6}+\ldots \tag{4}
\end{align*}
$$

- To cancel the fourth order term we multiply (4) by 2^{4} and subtract (3)

$$
V(h)=\frac{2^{4} U(h / 2)-U(h)}{2^{4}-1}=U(h / 2)+\frac{U(h / 2)-U(h)}{2^{4}-1}
$$

and $I(f)=V(h)+a^{\prime \prime}{ }^{\prime}{ }_{6} h^{6}+\ldots$

- And so on ... yields the Romberg Algorithm

Romberg Algorithm

- Set $\mathrm{H}=\mathrm{b}-\mathrm{a}$ and define

$$
\begin{aligned}
& R(0,0)=T(f ; H) \\
& R(1,0)=T(f ; H / 2)
\end{aligned}
$$

$$
R(1,0)=T\left(f ; H / 2^{n}\right)
$$

(e.g. calculated by recursive Trapezoid)

- Then:

$$
R(n, m)=R(n, m-1)+\frac{R(n, m-1)-R(n-1, m-1)}{2^{2 \mathrm{~m}}-1}
$$

- and

$$
I(f)=R(m, m)+O\left(h^{2(m+1)}\right)
$$

Romberg Triangle

- Recursive calculation of the $R(n, m)$'s ...

More Ideas ...

- "Mesh" should be finer when f changes a lot
- -> adaptive methods
- Gaussian quadrature:
- All methods somehow approximate integrals via

$$
\int_{a}^{b} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+\ldots+A_{n} f\left(x_{n}\right)
$$

- Squares $x_{0}=a, A_{0}=1$
- Trapezoid $x_{0}=a, x_{1}=b, A_{0}=A_{1}=1$
- Could also optimize the xi and Ai to improve precision
- Gaussian quadrature does this tuning these parametes to get integrals for polynomials of order m right

Summary

- What is important to remember:
- Taylor series and how to use them to estimate truncation errors
- The idea of numerical differentiation
- The idea of basic schemes for numerical integration, say Trapezoid
- More advanced stuff is nice to remember but can be looked up when needed

