
Deriving structural labelled transitions for mobile

ambients

Julian Rathke, Pawe l Sobociński∗,1

ECS, University of Southampton

Abstract

We present a new labelled transition system (lts) for the ambient calculus.
Its most important property is that ordinary (strong) bisimulation coincides
with (strong) contextual equivalence. The lts is the outcome of the au-
thors’ ongoing work towards developing general techniques and systematic
procedures for deriving ltss in the structural (sos) style from the underlying
reduction semantics and observability.

Key words: labelled transition systems (lts), structural operational
semantics (sos), ambient calculus, bisimulation

Introduction

Since the introduction of archetypal process calculi (CCS [21], CSP [15],
ACP [2] and the π-calculus [10, 22]) there has been a proliferation of new
languages, extensions and assorted variants of earlier calculi. Each addresses
some computational feature and/or enjoys specific properties. One concern
that is often voiced regarding this field is that the semantics, usually a la-
belled transition system, is often ad hoc and heavily locally optimised. This
state of affairs is unsatisfactory and initial attempts to address the issue were
made in [33, 18] where it was proposed that labelled transitions should be
derived (rather than defined) from underlying reduction rules for the lan-
guage, the justification being that reduction rules are generally easier to
define uncontentiously and can be taken to be definitional. Specifically, it

∗Corresponding author
1Research partially supported by EPSRC grant EP/D066565/1

Preprint submitted to Information and Computation December 2, 2009

was proposed that labels ought to be ‘suitably minimal’ contexts that trigger
reductions.

Sewell’s seminal results [33] in this direction were limited in their scope.
Leifer and Milner generalised the approach with some degree of success [18].
A general definition of ‘contexts as labels’ was provided using the universal
property of relative pushouts (rpos) to obtain a suitable notion of minimal-
ity. Even so, this work still has its problems, the chief of which is that the
derived labelled transition systems are not presented in an inductive manner
and are therefore often difficult to characterise and reason about. Indeed,
compositionality in the sense of “the semantics of a compound phrase is a
function of the semantics of its subphrases” is lost. It is thus easy to lose
sight of the fact that an original intention of structural operational semantics
[26] and labelled transition systems [21] was to provide an inductive defini-
tion of the reduction relation for a language. Their subsequent use as points
of comparison of interaction in bisimulation equivalences has allowed focus
to drift away from inductively defined labelled transition systems and on to
labels as the contextually observable parts of interaction.

Our long-term goal is to provide a method by which structurally defined
labelled transition systems can be derived from an underlying reduction se-
mantics. For this derived transition system, bisimulation equivalence must
characterise a (canonical, if possible) contextually defined equivalence. This
task is difficult and we have begun by evaluating our ideas for well-known
process calculi. The results of such an experiment for the π-calculus appear
in [28]. The present paper concerns the ambient calculus of Cardelli and
Gordon [8] and is an extended version of a conference paper [29]. Another
recent work in this area is [30].

The ambient calculus has enjoyed some success as a foundational model of
spatially distributed, concurrent processes that are hierarchically arranged,
can migrate and dynamically modify the structure of their location. For
our purposes, however, it is merely a small calculus with an interesting set
of reduction rules. Moreover, endowing it with a labelled transition system
and bisimulation equivalence was historically viewed as a challenging and
worthwhile goal in its own right [6, 19]. It is, therefore, an ideal place to
develop, apply and hone generally applicable syntactic techniques for the
derivation of structural labelled transition systems. Indeed, the ambient
calculus contrasts nicely with the π-calculus, the subject of our companion
paper [28] on derivation of sos rules: it is almost as well-known but its
reduction semantics has a markedly different nature; whereas the π-calculus

2

has a single reduction rule schema that is structurally very simple but features
a non-trivial use of meta-types (name substitution), the ambient calculus
has three reduction rule schemas with quite intricate structure, but which
reference only base types (see Section 2). Our purpose, as in [28], is not
necessarily to improve or undermine an existing labelled transition system
but to derive one, identifying principles and techniques that we hope will
prove to be more generally applicable.

Roughly, the approach we take is to consider the underlying reduction
rules of the language as open rewrite rules, which we dub skeletons. If a
term partially matches the left-hand side of a (partially instantiated) rule, it
will be the source of a labelled transition. The transition’s label represents
the remaining structure of the left-hand side of the reduction rule along with
any missing parameters that must be supplied by an interacting context. This
separation of a rule’s structure and parameters allows us to build our labelled
transition systems in three steps: we derive process-view transitions whose
main purpose is to provide an inductively defined reduction relation, then
the context-view transitions that allow for a context to supply parameters to
an interaction, and finally global rules that combine them into a complete
labelled transition. Technically, we make use of the simply typed λ-calculus
as a powerful meta-language for syntax manipulation.

In addition to the inclusion of proofs and a more complete account of
the derivation process, the current paper differs from the previous conference
version [29] in that the structural nature of the lts is emphasised. Previously
we have used structural congruence to simplify the derivation process and,
subsequently, the theorems about the resulting lts. The price we paid for
enhanced simplicity was obscured syntactic structure that made it harder to
claim that our lts was “truly” structural. Our justification was that the use
of structural congruence was not ineradicable. In this paper we put this into
practice. This fact should be contrasted with other recent work [3], in which
the use of structural congruence is unavoidable.

Structure of the paper. We present the syntax and semantics of the ambi-
ent calculus, along with a suitable contextually defined equivalence, in the
next section. We then give an account of our method of deriving labelled
transitions and show its instantiation for the ambient calculus in Section 2.
In Section 3 we list technical lemmas about the derived lts that allow us
to connect labels with contexts—a necessary step in order for a satisfac-
tory comparison of bisimilarity with a contextual equivalence. In Section 4

3

we prove that bisimilarity is sound for reduction barbed congruence. In Sec-
tion 5 we add suitable Honda-Tokoro [16, 30] rules and show that bisimilarity
on the resulting lts is both sound and complete. We include a comparison
with related work in Section 6 and close with concluding remarks regarding
future work.

1. Ambients: syntax, metasyntax and reduction semantics

We give the grammar for sorts/types below (1). Expressions in the am-
bient calculus will be either names (of sort N) or processes (of sort Pr).

σ ::= N | Pr (1)

The grammar for terms is specified below (2). As is usual, ordinary terms
derived from the grammar will be considered as abstract syntax.

M ::= m | X | 0 | M ‖ M | M [M] | νm M

| out M.M | in M.M | open M.M (2)

We assume distinct countable supplies of names (ranged over by m, n; first
syntactic category in (2)) and variables (ranged over by X, Y, x, y; second
syntactic category in (2)). The syntactic construct ‘ν’ is a binder—it binds
a name within its scope. To avoid unnecessary bookkeeping we assume that
the syntax is quotiented with respect to α-equivalence, that is, we treat α-
equivalent terms as equal. Indeed, in this paper and in our work on the
π-calculus [28] we never examine the “syntactic identity” of bound names
within a term. We shall need to be careful, however, when talking about
contexts—these, in general, have the ability to bind.

Types are assigned to terms in the standard way. The type inference rules
are listed in Fig. 1. A type context Γ is a finite map from variable names
to types. Following the standard practice, we shall consider only typeable
terms. By convention, we shall use x, y for variables of type N, X, Y for
variables of type Pr, k, l for terms of type N and P , Q, R for closed terms of
type Pr. M , N will be used for arbitrary terms of type Pr.

Given an lts L the only labelled equivalence we shall consider is standard
(strong) bisimilarity ∼L. It is the largest bisimulation on L. Because we
wanted to focus on the systematic derivation procedure of ltss, we have not

4

(:Nm)

Γ ` m : N

Γ(X)=σ

(:Var)

Γ ` X : σ

(:0)

Γ ` 0 : Pr

Γ ` M : Pr Γ ` N : Pr

(:‖)
Γ ` M‖N : Pr

Γ ` k : N Γ ` M : Pr

(:Amb)

Γ ` k[M] : Pr

Γ ` k : N Γ ` M : Pr

(:ν)

Γ ` νk M : Pr

Γ ` k : N Γ ` M : Pr

(:OuPr)

Γ ` out k.M : Pr

Γ ` k : N Γ ` M : Pr

(:InPr)

Γ ` in k.M : Pr

Γ ` k : N Γ ` M : Pr

(:OpPr)

Γ ` open k.M : Pr

Figure 1: Type inference rules for typing terms generated by grammar (2).

considered weak equivalences in this paper; our feeling is that the study of
weak equivalences examines largely orthogonal issues. We shall come back
to this issue in the section on future work.

1.1. Replication and infinite processes

Before we proceed, it is worth noticing that our language does not contain
replication or recursion operators and is thus finite. This is not a significant
restriction because the crafting of a labelled transition system relies mainly
on the characterisation of the immediately possible interactions of a process
with a context—where an interaction means that the process and the context
together (i.e. with non-trivial participation from each) trigger a reduction. In
other words, labels themselves usually do not carry any information about
the future behaviour (whether finite or not) of a process, only its current
capability for interaction.

Technically this observation manifests itself through the usual semantics
of replication: it is normally handled purely with structural congruence and
not with its own reduction rule: !P is, roughly, interpreted as an ‘infinite
parallel composition’ of P ’s as evidenced by the structural congruence axiom
!P ≡ P ‖!P . The ramification is that the syntactic construct ! does not
have its own inherent dynamics.

For sake of concreteness we could easily include a replication operator
with negligible impact on the lts rules; it would suffice to include the rule

P‖!P
α−→P ′

(Rep)

!P
α−→P ′

5

that, in any derivation, simply ‘unfolds’ enough P ’s in parallel in order to
derive the desired labelled transition—this is possible because ‖ does not
inhibit behaviour, see the rules (L‖ ∗) of Fig. 2.

More generally, (Rep) above can be seen as an instance of Plotkin’s [26]
well-known SOS rule

P [µX.P/X]
α−→P ′

(Rec)

µX.P
α−→P ′

for recursion and hence the above discussion is not limited just to replication.
We chose not to consider these extensions in order to keep these details,
irrelevant from the point of view of the derivation process, from increasing
the complexity and specificity of the presentation. It is worth keeping in
mind, however, that the presence of infinite processes can sometimes have
an effect on the completeness of bisimilarity for contextual equivalence. The
reasons for this are related to the reasons for why reduction congruence can
sometimes coincide with barbed congruence in a finite language [23]. See
Remark 17 for further elaboration on this point.

1.2. Contexts

A general notion of context is vital for a satisfactory exposition of the
techniques harnessed in this paper. Contexts are defined using preliminary
constructs that we shall refer to as ‘precontexts’.

Definition 1 (Precontext). Syntactically, precontexts are generated by the
grammar obtained by adding a σ-annotated hole −σ for each type σ and a
constructor for n-tuples (for any n ∈ N) to the grammar (2):

M ::= . . . | −σ | (M, . . . , M),

with the proviso that the ν-binder now has a different nature depending
on whether its scope includes a hole—if this is the case then the resulting
syntactic construct is not subject to α-equivalence, if not then the resulting
construct is treated as within an ordinary term, up to α-equivalence. While
this schizophrenic nature of the ν-binder may seem peculiar, there are no
technical problems with its usage. In order to type precontexts, we add two
additional type rules to the set of inference rules presented in Fig. 1:

(:Hole)

Γ ` −σ : σ

` V1 : σ1 ... ` Vn : σn (n∈N)

(:Tup)

` (V1,...,Vn) : [σ1...σn]
.

6

where [~σ] is called an interface type. A precontext is then a typeable term of
the form (V1, . . . , Vn). Note that as a consequence of the fact that we require
empty type contexts in rule (:Tup), any precontext of this form must have
each Vi a closed term (no free variables). Indeed, it is worth emphasising
that holes and variables are separate syntactic entities.

Definition 2 (Context). Suppose that a precontext (~V) : [~σ] contains m
instances of type-annotated holes. A 1-1 enumeration of its holes with natural
numbers from 1 to m uniquely determines a word ~τ over types, where τi is
the type of the ith-numbered hole. Syntactically replacing each hole with its
number yields a context of type [~τ] → [~σ]. Ordinary terms of type Pr will be
identified with contexts of type [] → [Pr]. Given contexts f : [~σ1] → [~σ2] and
g : [~σ2] → [~σ3], there is a context g ◦ f : [~σ1] → [~σ3] obtained by substitution
of the ith component of f for the ith hole of g. This operation may involve
capture if the hole is in the scope of a binder. Given f : [~σ1] → [~σ2] and
g : [~σ3] → [~σ4] let f ⊗ g : [~σ1 ~σ3] → [~σ2 ~σ4] be the context that puts f and g
‘side-by-side’, where the numbering of all the holes in g are incremented by
the length of ~σ1. Moreover:

• for any word ~σ = σ1 . . . σk, the identity context id[~σ] : [~σ] → [~σ] is
(1σ1 , . . . , kσk

);

• if, given ~σ and ~τ of equal length k, there exists a permutation ρ : k → k
such that ∀1 ≤ i ≤ k. σρi = τi, there is an induced permutation context
ρ : [~σ] → [~τ] of the form (ρ1τ1 , . . . , ρkτk

);

• a language context is a context of type [Pr] → [Pr]. These will be
denoted by C;

• an evaluation context is simply a language context of type [Pr] → [Pr]
in which the hole does not appear under a prefix. We shall denote these
by D;

• an interaction context is an evaluation context in which the hole does
not appear within an ambient—it must appear at “top level”. We shall
denote these by E ,F ;

• given a language context we shall write C # k if the hole of C is not
within the scope of a νk.

7

To denote substitution of a term M in a language context C we shall often
write CJMK instead of C◦M . A relation R on terms is said to be a congruence
if M R N implies CJMK R CJNK for all language contexts C.

1.3. Structural congruence

Structural congruence is the smallest relation ≡ on (possibly open) Pr-
typed terms of the language that contains the axioms below and is a con-
gruence. We write Γ ` P ≡ Q as shorthand for Γ ` P : Pr, Γ ` Q : Pr
and P ≡ Q. Roughly, the axioms ensure that ‖ can be thought of as an
associative and commutative operator with identity 0 and the syntactic ν
binder can migrate throughout the term without changing the set of bound
names.

Γ ` (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R) Γ ` P ‖ Q ≡ Q ‖ P Γ ` P ‖ 0 ≡ P

Γ ` νm νn P ≡ νn νm P Γ ` νm 0 ≡ 0

Γ ` νm (P ‖ Q) ≡ P ‖ νm Q (m not free in P)

Γ ` νm (n[P]) ≡ n[νm P] (m 6= n)

Structurally congruent terms should be considered as being ‘intensionally’
equal although clearly not ‘syntactically’ equal.

Remark 3. In previous expositions [28, 29] we have essentially quotiented
the syntax by structural congruence when presenting our labelled transition
systems, with the proviso that the use of structural congruence was not essen-
tial and its purpose was solely to simplify the presentation. This is a subtle
issue because quotienting syntax by structural congruence ‘blurs’ structure
to some degree and thus it may no longer be clear what a “structural op-
erational semantics” means on syntax up to structural congruence. Indeed,
in [3] a simpler lts has been obtained with a price: the use of structural con-
gruence in a derivation is an ineradicable component. Here we shall refrain
from using structural congruence in the presentation of the lts in order to
emphasise its structural nature.

1.4. Meta-syntax

We shall use a meta-syntax for simple syntactic manipulation of terms.
The meta-syntax is a simply typed λ-calculus and can be thought of as a
primitive system of higher order abstract syntax [24]. In (3) below we extend

8

the base types (1) with function types that will be necessary in order to type
terms in the metasyntax.

σ ::= . . . | σ → σ (3)

The λ-calculus operators added to the signature (2) in (4) below consti-
tute the syntactic aspect of the meta-language. Their function is solely to
make the structural definition of a labelled transition system possible and
they should not be considered as a language extension, having no computa-
tional meaning. They are to be thought of as meta-operators on syntactic
phrases of the language.

M ::= . . . | λX : σ. M | M(M) (4)

In the above, λ-abstraction binds variables and we do not distinguish α-
equivalent terms, analogously to our treatment of the ν-binder.

Terms in the metalanguage are typed with aid of the standard type rules
for simply typed λ given in (5) below; these are added to the set of type rules
presented in Fig. 1.

Γ,X:σ ` M : σ′

(:λ)

Γ ` λX:σ. M : σ→σ′

Γ ` M : σ→σ′ Γ ` N : σ

(:App)

Γ ` M(N) : σ′
(5)

We quotient the terms of the metasyntax by the smallest congruence that
contains (6) and (7). Substitution is the usual capture-avoiding notion—it
is capture avoiding with respect to all binders and thus also the ν-binder of
the underlying language.

(λX : σ. M)(N) = M [N/X] (6)

λX : σ. M(X) = M (7)

In the remainder of the paper, when we write a metasyntax phrase of base
type, say Pr, we mean the syntactic phrase that corresponds to the complete
evaluation of the metasyntactic term. This technique is very useful because it
avoids many bureaucratic difficulties of binding scopes. Notice that this con-
vention does not contradict our quotienting of general metasyntactic terms
by (6) and (7)—its only consequence is that when we speak of a generalised
term of base type we can assume that it is a bona fide syntactic term, not
an equivalence class of meta-syntactic terms.

We can extend structural congruence to terms containing λ-abstractions
by letting Γ ` λX. P ≡ λX. Q whenever Γ, X ` P ≡ Q. Structural congru-
ence is compatible with (6) in the following sense:

9

Lemma 4. If P ≡ Q : σ → τ and for some R ≡ S : σ then it follows that
P (R) ≡ Q(S) : τ .

1.5. Reductions

The inductive presentation of the reduction semantics is given below. It is
easy to show that subject reduction holds. Note that the presence of (StrCong)

makes this not a structural presentation (since structure can be changed with
the aid of ≡). In the conference version of this paper [29] we included this
rule also in our main lts with the proviso that it could be removed (see
Remark 3). Herein we shall use the rule (StrCong) solely for the purpose of
defining the reduction relation, for which purpose it is intrinsic.

(In)

m[in n.P‖Q]‖n[R]→n[m[P‖Q]‖R]

(Out)

n[m[out n.P‖Q]‖R]→m[P‖Q]‖n[R]

(Open)

open n.P‖n[Q]→P‖Q

P →P ′

(Par)

P‖Q→P ′‖Q

P →P ′

(Nu)

νn P → νn P ′

P →P ′

(Amb)

n[P]→n[P ′]

P ′≡P P →Q Q≡Q′

(StrCng)

P ′→Q′
.

The ‘touchstone’ equivalence for our purposes is reduction barbed congru-
ence. It is outside of the scope of this paper to give a systematic explanation
of how the correct barbs are to be chosen in general. Some progress towards
this goal has been made in [27].

Below we recall a suitable definition of barb for the ambient calculus and
the definition of the equivalence itself.

Definition 5 (Barbs). We say that a term P barbs on an ambient m, written
P↓m, if there is a “top level” instance of an ambient m in P . More formally,
P = EJm[P ′]K for some P ′ and interaction context E such that E # m.

Definition 6 (Reduction barb congruence). Reduction barb congruence (')
is the largest symmetric relation R such that if P R Q then:

(i) If P → P ′ then there exists Q → Q′ such that P ′ R Q′;

(ii) if P↓m then Q↓m;

(iii) for all language contexts C we have that CJP K R CJQK.

10

2. Derivation of a structural LTS

The chief contribution of this paper is a systematic derivation procedure of
a novel structurally-defined lts for the ambient calculus. First, we consider
the reduction axioms (In), (Out) and (Open) as parameterised rules, referred
to as skeletons. A skeleton is a pair of contexts (lαn , rα

n) that describe the
structural changes in passing from lαn to rα

n . There are three skeletons: Sk in
n ,

Skout
n and Skopen

n with components:

(linn
def
= 1N[in n.2Pr ‖ 3Pr] ‖ n[4Pr], rin

n
def
= n[1N[2Pr ‖ 3Pr] ‖ 4Pr])

(loutn
def
= n[1N[out n.2Pr ‖ 3Pr] ‖ 4Pr], rout

n
def
= 1N[2Pr ‖ 3Pr] ‖ n[4Pr])

(lopenn
def
= open n.1Pr ‖ n[2Pr], ropen

n
def
= 1Pr ‖ 2Pr)

that are typed linn , rin
n : [N, Pr3] → [Pr], lout

n , rout
n : [N, Pr3] → [Pr] and

lopenn , ropen
n : [Pr2] → [Pr] respectively. Using skeletons and contexts we can

give an alternative “global” presentation of the reduction semantics of the
calculus.

Proposition 7. Let →g be the following relation on pairs of closed terms
of type Pr:

P →g P ′ iff ∃α ∈ {in, out , open}, n, D, ι. P ≡ DJlαn◦ιK ∧ P ′ ≡ DJrα
n◦ιK

where D is an evaluation context and ι are parameters of the appropriate
type. Then →g =→ .

The condition on P and P ′ in Proposition 7 is illustrated in the diagram
below.

lαn

ι

D

P ≡ P ′ ≡

ι

D

rα
n

The derivation rules of our lts are organised into three subsets: those
defining the ‘process view’, in Fig. 2, the ‘context view’ in Fig. 3, and the
‘combined’ system in Fig. 4. The context view is the simplest of these and
consists of a single applicative rule. In the remainder of this section we
describe how to analyse the skeletons in order to obtain process-view rules
and how this combines with the context view.

11

2.1. Derivation procedure: axioms

Considering the left-hand side l : [~σ] → [Pr] of a skeleton Sk as a syntax
tree, we say that a match is a subtree with root of type Pr. More formally,
a match for l is any µ : [~σ1] → [Pr] such for some ~σ2 there is a permutation
ρ : ~σ1 ~σ2 → ~σ, and there exists a context χ : [Pr, ~σ2] → [Pr] satisfying (8)
below.

χ ◦ (µα
n ⊗ id[~σ2]) = lαn ◦ ρ (8)

The intuition for the above equation is given by the diagram below.

χ

µα
n

lαn

ρ
=

A match is said to be active if there does not exist a context χ′ : [Pr, ~σ2] →
[Pr] satisfying (9).

χ′ ◦ (µα
n ⊗ id[~σ2]) = rα

n ◦ ρ (9)

Intuitively, an active match is a part of the left-hand side of the skeleton that
is modified as a result of the reduction. Clearly any match that has an active
match as a subtree is itself active. Of particular interest are those active
matches that are locally minimal with respect to the subtree relation.2

Observation 8. The minimal active matches are:

• for Sk in
n : in n.1Pr and n[1Pr];

• for Skout
n : out n.1Pr;

• for Skopen
n : open n.1Pr and n[1Pr].

The axioms of our process-view lts are determined by the minimal active
matches. Indeed, their left-hand sides are the instantiated minimal active
matches: given a minimal active match µα

n : [~σ] → [Pr] they are the terms
µα

n ◦ ι where ι : [] → [~σ]. The result is the right-hand side of the skeleton

2Choosing active matches allows us to consider only those contexts in which the term
under consideration interacts non-trivially. The definition given here also gives the right
SOS axioms when applied in the setting of π-calculus.

12

instantiated with the parameters ι of the minimal match together with that
remaining parameters ι′ required by χ:

µα
n ◦ ι

χ◦(1Pr⊗ι′)−−−−−−→ rα
n ◦ ρ ◦ (ι⊗ ι′). (10)

For the sake of intuition, it may be of use examining a graphical representa-
tion of the above, which we provide below.

µα
n

ι

χ

ι′ rα
n

ι ι′

The label is clearly a minimal context that triggers a reduction and as such
is related to the early work of Sewell [33] and later work in this direction [18,
31, 32]. Indeed, the context provides χ ◦ (1Pr ⊗ ι′) and enables a reduction
χ◦(1Pr⊗ι′)◦µα

n ◦ι = χ◦(µα
n⊗ id)◦(ι⊗ι′) = lαn ◦ρ◦(ι⊗ι′) → rα

n ◦ρ◦(ι⊗ι′);
this is illustrated below with aid of diagrams.

χ

ι′µα
n

ι

=

χ

ι′

µα
n

ι ι ι′

=
rα
n

ι ι′

lαn

The main challenge to resolve in the sequel is to understand how to derive a
transition such as (10) compositionally using sos.

Note that each χ is uniquely determined by the particular minimal active
match µn

α. For this reason in the label of the transition we shall use a textual

representation αin↓ ~M where αin represents the ith minimal active match of
Skα

i , and ~M the list of the remaining parameters (see ι′ in (10)). Following
this procedure, we obtain the following labelled transitions:

in n.P
in1 n↓QkR−−−−−→n[k[P‖Q]‖R] n[P]

in2 n↓QRk−−−−−→n[k[Q‖R]‖P] (11)

out n.P
out1 n↓QkR−−−−−−→ k[P‖Q]‖n[R] (12)

open n.P
open1 n↓Q−−−−−→P‖Q n[P]

open2 n↓Q−−−−−→Q‖P (13)

13

An obstacle in giving a structural derivation of such an lts is that in the
results of the above transitions the distinction between ingredients for the in-
teraction provided by the left-hand side term and ingredients provided by the
context is lost. Our solution is to delay instantiation of the context compo-
nents. Technically this is done with meta-syntax—the context contributions
are initially replaced with lambda abstracted variables.

The sos rules are thus naturally divided into three parts: rules for the
process-view lts C for deriving the part of the label to the left of the ↓
symbol, rules for the context-view lts A for deriving the remainder of the
label, and rules for the combined lts CA that juxtapose these two views
to form “complete” labelled transitions. Following this nomenclature, the
process view’s contribution to the transitions in (11) is

(In1)

in n.P
in1 n−−→λXxY. n[x[P‖X]‖Y]

(In2)

n[P]
in2 n−−→λXYx. n[x[X‖Y]‖P]

(14)

while the context parts are given by rule (Inst) of Fig. 3.
The rule that juxtaposes them is (Cλ) of Fig. 4. We take (In1), (In2) (see

14), (Ou1) (obtained from (12)), (Op1), (Op2) (obtained from (13)) as provisional
axioms for the process-view lts. By ‘provisional’ we mean that they are not
the ‘official’ axioms (given in Fig. 3) of the lts: they are given here as a
starting point to aid the explanations below.

2.2. Derivation procedure: structure

Once the (provisional) axioms are determined, we can attempt to provide
structural rules. There are three kinds, depending on the role that the added
structure plays in the interaction that the label represents:

(i) a substructural modification: the added structure takes part in the re-
duction but the match, and therefore the label, remain unchanged. The
structure is added to the appropriate parameter in the right-hand side.
A particular kind of substructural transition used here concerns the
situation where the current match is in parallel with a hole of type Pr
in the skeleton; e.g. the minimal active match of Skout

n . Using the fact
that structural congruence ensures that (‖, 0) is a commutative monoid,
introducing a parallel component does not mean that we must expand
the match, instead we add the new component to the appropriate pa-
rameter;

14

(In)

in n.P
in n−−→λXxY. n[x[P‖X]‖Y]

P
in n−−→T

(l‖In)

P‖Q
in n−−→λX. T (Q‖X)

P
in n−−→T m6=n

(νIn)

νm P
in n−−→ νm T

P
in n−−→T

(InAmb)

m[P]
[in n]−−→T (0)(m)

P
[in n]−−→U

(l‖InAmb)

P‖Q
[in n]−−→U‖Q

P
[in n]−−→U m6=n

(νInAmb)

νm P
[in n]−−→ νm U

(coIn)

n[P]
[in n]−−→λZ. Z(P)

P
[in n]−−→A

(l‖coIn)

P‖Q
[in n]−−→A‖Q

P
[in n]−−→A m6=n

(νcoIn)

νm P
[in n]−−→ νm A

(Ou)

out n.P
out n−−→λXxY. x[P‖X]‖n[Y]

P
out n−−→T

(l‖Ou)

P‖Q
out n−−→λX. T (Q‖X)

P
out n−−→T m6=n

(νOu)

νm P
out n−−→ νm T

P
out n−−→T

(OuAmb)

m[P]
[out n]−−−→T (0)(m)

P
[out n]−−−→U

(l‖OuAmb)

P‖Q
[out n]−−−→λY. U(Q‖Y)

P
[out n]−−−→U m 6=n

(νOuAmb)

νm P
[out n]−−−→ νm U

(Op)

open n.P
open n−−−→λX. P‖X

P
open n−−−→U

(l‖Op)

P‖Q
open n−−−→U‖Q

P
open n−−−→U m6=n

(νOp)

νm P
open n−−−→ νm U

(coOp)

n[P]
open n−−−→λZ. Z(P)

P
open n−−−→A

(l‖coOp)

P‖Q
open n−−−→A‖Q

P
open n−−−→A m6=n

(νcoOp)

νm P
open n−−−→ νm A

P
[in n]−−→U Q

[in n]−−→A

(InTau)

P‖Q
τ−→A(U)

P
[out n]−−−→U

(OuTau)

n[P]
τ−→U(0)

P
open n−−−→U Q

open n−−−→A

(OpTau)

P‖Q
τ−→A(U)

P
τ−→P ′

(L‖Tau)

P‖Q
τ−→P ′‖Q

P
τ−→P ′

(νTau)

νm P
τ−→ νm P ′

P
τ−→P ′

(TauAmb)

n[P]
τ−→n[P ′]

Figure 2: Process view (C). By convention T : Pr → N → Pr → Pr, U : Pr → Pr,
A : (Pr → Pr) → Pr. Symmetric rules (r‖∗) omitted. When T = λ~X. P we use T ‖ Q

def=
λ~X. (T (~X) ‖ Q) and νmT

def= λ~X. νm T (~X)

15

~M :~σ

(Inst)

λ~X:~σ. P
↓~M−→ (λ~X:~σ. P)(~M)

Figure 3: Context-view fragment (A).

P
α−→C A A

↓M−→A P ′

(Cλ)

P
α↓M−−→P ′

P
[in n]−−→C A

(coInλ)

P
[in n]↓RSk−−−−−→A(λX. n[k[R‖S]‖X])

P
τ−→C P ′

(CTau)

P
τ−→P ′

P
open n−−−→C A

(coOpλ)

P
open n↓R−−−−→A(λX. R‖X)

Figure 4: Combined system of complete actions (CA).

(ii) a superstructural modification: the match, and therefore the label, re-
main unchanged and the added structure does not take part in the
reduction; it is added to the result at top level. This situation is com-
mon and therefore we shall make use of the following abbreviations that
deal with lambda abstractions T = λ~X. P :

T ‖ Q
def
= λ~X. (T (~X) ‖ Q) and νm T

def
= λ~X. νm T (~X) ;

(iii) an observational modification: the extra structure forces an enlarge-
ment of the match as a subtree of its skeleton—here the label itself
has to be changed. Once enough structure is added to cover the entire
left-hand side of a skeleton, a τ -labelled transition should be derived.
This can occur in two ways, depending on the number of the minimal
active matches in the skeleton. These two cases are analysed in the two
paragraphs below for the setting of the ambient calculus.

In Skout
n , which has only one minimal active match, the procedure is rel-

atively straightforward. The axiom (Ou) in Fig. 2 is just (Ou1) as described
previously, with the numeral omitted. The rule (l‖Ou) is a substructural mod-
ification as described above. The rule (νOu) is a superstructural modification
since the ν binder has to first migrate outside, using structural congruence,

16

before the reduction can take place. The side condition enables this emigra-
tion. Note that because substitution that is part of β-reduction is capture
avoiding, the binder in the right-hand side of the transition will not bind
any names from the context when the context is instantiated via the context
view rule. This is the correct behaviour and illustrates the import of capture-
avoiding substitution and hence the suitability of using simply typed λ as
a metalanguage. The rule (OuAmb) is an observational modification, here the
structure (the ambient n) forces us to expand the match within the skele-
ton, meaning that we can now instantiate the first two parameters. The rule
(l‖OuAmb) is substructural while (νOuAmb) is superstructural. Finally, (OuTau) is
an observational modification that completes the skeleton, meaning that a
τ -labelled transition is derived.

Skeletons with two (or more) minimal active matches lead to a more in-
volved situation. Consider the two minimal active matches of Sk in

n and the
two corresponding provisional axioms given in (14). Starting with either
one, structure can be added, extending the match. Indeed, consider (In) of
Fig. 2 obtained from (In1) of (14) by omitting the numeral. The rule (l‖In)

is substructural and (νIn) superstructural. The rule (InAmb) is observational
and extends the minimal match with a surrounding ambient. No further
extension of the match is possible without including a contribution of the
second minimal active match. The structural approach requires a combina-
tion of observations of the two matches in order to cover the entire left-hand
side of the skeleton and derive a τ . However, in our two provisional axioms
(In1), (In2) we have included the right-hand side of the skeleton in result of the
transitions ; a consequence that it is not obvious how to ‘merge’ the two by
collecting appropriate parameters. Our solution is to use co-actions, borrow-
ing continuation-passing style. Indeed, we discard (In2) and instead use the
axiom (coIn) of Fig. 2. The idea is that rather than using a concrete skeleton
in the result, we use an “abstract” skeleton and apply that to the parameter
(of the minimal active match). Merging actions and co-actions is now easy
as the abstract skeleton can be replaced by the actual skeleton provided by
the action. Superstructural rules (l‖coOp) and (νcoOp) are straightforward and
we are able to use (InTau) to collect the parameters to the right-hand side of
the skeleton using a simple application. A similar approach is used to deal
with the open reduction.

The use of co-actions gives one final complication. Because the result of
a co-action transition does not have the shape that would result from using
the right-hand side of the skeleton, we cannot simply use the combination

17

of (Inst) of Fig. 3 and (Cλ) of Fig. 4. Instead, we use rules (coInλ) and (coOpλ),
which ensure that any context provided by the environment conforms to the
appropriate skeleton.

It is worth clarifying as to what extent the procedure, as described above,
is systematic. As we have explained, we have chosen to include the right-hand
side of the skeleton in the result of the transition derived by (In1), resulting
in (In). Differently, and in seemingly ad hoc fashion, we have not done this
for (In2), using instead a co-action (CoIn). A more uniform presentation would
consist in using the co-action style for all the labels. Following this approach,
actual skeletons would never actually be instantiated in the right-hand side
of the process-view transitions. The main price for this is that the rule (Inst)

would need to be replaced with specific rules for each co-action, in the spirit
of (CoInλ) and (CoOpλ) of Fig. 4. Such an ‘all-co-action’ sos rule set would
derive the same lts as the rule set presented in this paper. We believe that
this approach could be mechanised. We have chosen to present the rules as
in Fig. 2 because we believe that they are easier to understand, and more
importantly, they correspond more closely to rules in previously published
sos rule sets for the ambient calculus (see Section 6).

3. Properties of the LTS

Many of the proofs in the proceeding sections rely on a structural de-
composition that, given a labelled transition, gives us some of the relevant
structure of the left-hand side. This is the role of Lemmas 9 and 10 be-
low. The first (Lemma 9) deals with the process-view lts C and the second
(Lemma 10) pertains to the complete lts CA.

Lemma 9 (Structural, C). In each of the following choices for (α, Q, B), if
P

α−→ CA (α 6= τ) then there exists a name n and an interaction context E
with E # n so that P = Q and A ≡ B. Conversely, if P = Q for some
interaction context E # n then there exists A ≡ B such that P

α−→ CA.

(i) α = in n, Q = EJin n.P1K and B = λXxY. n[x[EJP1K ‖ X] ‖ Y];

(ii) α = [in n], for some m, E ′ # n Q = EJm[E ′Jin n.P1K]K and B =
λY. EJn[m[E ′JP1K] ‖ Y]K;

(iii) α = [in n], Q = EJn[P1]K and B = λZ. EJZP1K;

(iv) α = open n, Q = EJopen n.P1K and B = λY. EJP1 ‖ YK;

18

(v) α = open n, Q = EJn[P1]K and B = λZ. EJZP1K;

(vi) α = out n, Q = EJout n.P1K and B = λXxY. x[EJP1K ‖ X] ‖ n[Y];

(vii) α = [out n], there exist m and E ′ # n such that Q = EJm[E ′Jout n.P1K]K.
Let names ~l and term P2 be such that EJXK ≡ ν~l (X ‖ P2), then

B = λY. ν~l (m[E ′JP1K] ‖ n[P2 ‖ Y]).

Proof. In each case, first one reasons by induction over the derivation of
the labelled transition. For the converse, one argues by induction on the
structure of E .

The following lemma is easily proved using the conclusions of Lemma 9
and the construction of the lts. It is useful when reasoning about the com-
plete lts CA (see Fig. 4) and will be referred to often.

Lemma 10 (Structural, CA). In each of the following choices for (α, Q, Q′),
if P

α−→ CAP ′ (α 6= τ) then there exists a name n and an interaction context
E with E # n so that P = Q and Q ≡ Q′. Conversely, if P = Q for some
interaction context E # n then there exists P ′ ≡ Q′ such that P

α−→ CAP ′.

(i) α = in n ↓ RkS, Q = EJin n.P1K and Q′ = (λXxY. n[x[EJP1K ‖ X] ‖
Y])(RkS);

(ii) α = [in n]↓R, Q = EJm[E ′Jin n.P1K]K and Q′ = (λY. EJn[m[E ′JP1K] ‖
Y]K)(R);

(iii) α = [in n] ↓ RSk, Q = EJn[P1]K and Q′ = (λYZx. EJn[x[Y ‖ Z] ‖
P1]K)(RSk);

(iv) α = open n↓R, Q = EJopen n.P1K and Q′ = (λY. EJP1 ‖ YK)(R);

(v) α = open n↓R, Q = EJn[P1]K and Q′ = (λY. EJY ‖ P1K)(R);

(vi) α = out n ↓ RkS, Q = EJout n.P1K and Q′ = (λXxY. x[EJP1K ‖ X] ‖
n[Y])(RkS);

(vii) α = [out n]↓R, there exist m and E ′ # n s.t. Q = EJm[E ′Jout n.P1K]K.
Let names ~l and term P2 be such that EJXK ≡ ν~l (X ‖ P2), then Q′ =

(λY. ν~l (m[E ′JP1K] ‖ n[P2 ‖ Y]))(R).

19

Labelled transitions are compatible with structural congruence in the
following sense:

Lemma 11. Suppose that P
α−→CA P ′ and that P ≡ Q. Then there exists Q′

such that P ′ ≡ Q′ and Q
α−→CA Q′.

Proof. If α 6= τ then we argue by cases using the conclusions of Lemma 10.
The argument is roughly similar in each case. Roughly, we use the fact that
while for each kind of label α the structural congruence P ≡ P ′ ‘blurs’
structure, it preserves the ‘triggers’ of labels (the Q’s of Lemma 10).

Case α = in n ↓ RkS : P = EJin n.P1K and since P ≡ Q we must have
Q = FJin n.Q1K s.t. EJP1K ≡ FJQ1K (1). Now P ′ ≡ (λXxY. n[x[EJP1K ‖
X] ‖ Y])(RkS) and Q

α−→Q′ ≡ (λXxY. n[x[FJQ1K ‖ X] ‖ Y])(RkS) whence
from (1) it follows that P ′ ≡ Q′.

Case α = [in n]↓R : P = EJm[E ′Jin n.P1K]K, thus Q = FJm′[F ′Jin n.Q1K]K
(F , F ′ # n) such that EJm[E ′JP1K]K ≡ FJm′[F ′JQ1K]K (2). Now P ′ ≡
(λY. EJn[m[E ′JP1K] ‖ Y]K)(R) and Q

α−→Q′ ≡ (λY.FJn[m′[F ′JQ1K] ‖
Y]K)(R) so Q ≡ Q′ by (2) and the fact that E , F # n.

Case α = [in n]↓RkS : P = EJn[P1]K and so Q = FJn[Q1]K with EJP1K ≡
FJQ1K (3). Now P ′ ≡ (λYZx. EJn[x[Y ‖ Z] ‖ P1]K)(RSk) and Q

α−→Q′ ≡
(λYZx.FJn[x[Y ‖ Z] ‖ P1]K)(RSk) whence by (3) we have P ′ ≡ Q′;

Case α = open n ↓ R : P = EJopen n.P1K and so Q = FJopen n.Q1K such
that EJP1K ≡ FJQ1K (4). Now P ′ ≡ (λY. EJP1 ‖ YK)(R) and Q

α−→Q′ ≡
(λY.FJQ1 ‖ YK)(R), so by (4) we have P ′ ≡ Q′.

Case α = open n ↓ R : P = EJn[P1]K and so Q = FJn[Q1]K such that
EJP1K ≡ FJQ1K (5). Now P ′ ≡ (λY. EJY ‖ P1K)(R) and Q′ ≡ (λY.FJY ‖
P1K)(R) whence by (5) it follows that P ′ ≡ Q′.

Case α = out n ↓ RkS : P = EJout n.P1K and so Q = FJout n.Q1K such
that EJP1K ≡ FJQ1K (6). Now P ′ ≡ (λXxY. x[EJP1K ‖ X] ‖ n[Y])(RkS)
and Q

α−→Q′ ≡ (λXxY. x[FJQ1K ‖ X] ‖ n[Y])(RkS); by (6) it follows that
P ′ ≡ Q′.

Case α = [out n] ↓R : P = EJm[E ′Jout n.P1K]K, Q = FJm′[F ′Jout n.Q1K]K
such that EJm[E ′JP1K]K ≡ FJm′[F ′JQ1K]K (7). Now, letting ~l and P2 be

20

such that EJXK = ν~l (X ‖ P2), we have that P ′ ≡ (λY. ν~l (m[E ′JP1K] ‖
n[P2 ‖ Y]))(R) and for ~k, Q2 such that FJXK ≡ ν~k (X ‖ Q2) we have

Q
α−→Q′ ≡ (λY. ν~k (m′[F ′JQ1K] ‖ n[Q2 ‖ Y]))(R). Equation (7) can be

used to show that ν~l (m[E ′JP1K] ‖ P2) ≡ ν~k (m′[F ′JQ1K] ‖ Q2) which
implies that P ′ ≡ Q′.

Case α = τ : By induction on the derivation of the labelled transition we
obtain the possible structural decompositions of P that are preserved by ≡ ,
similarly to the other cases.

Notice that the conclusion of Lemma 11 implies that ≡⊆∼CA.

The following lemma provides a sanity check for our lts that ensures that
transitions obtained from our structural rules are justified by a reduction in a
context—the point with which we started our discussion in (10) on page 13.

Lemma 12. If P
α↓~M−−→ CAP ′, then there exists a context χα such that χα ◦

(1Pr, ~M) ◦ P → P ′; this is illustrated graphically below.

P

!M P ′

χα

The corresponding χα contexts are listed below:

χin n
def
= 3N[1Pr ‖ 2Pr] ‖ n[4Pr], χ[in n], χopen n

def
= 1Pr ‖ n[2Pr],

χ[in n]
def
= 4N[in n.2Pr ‖ 3Pr] ‖ 1Pr, χopen n

def
= open n.2Pr ‖ 1Pr,

χout n
def
= n[3N[1Pr ‖ 2Pr] ‖ 4Pr], χ[out n]

def
= n[1Pr ‖ 2Pr], χτ

def
= 1Pr

Proof. We include the case in n ↓ RkS, the other cases where (α 6= τ) are

similar. If P
in n↓RkS−−−−→P ′ then ∃E # n, P1 such that P = EJin n.P1K and P ′ ≡

λXxY. n[x[EJP1K ‖ X] ‖ Y](RkS). Also χin n ◦ (1Pr, R, k, S) ◦ P = (k[1Pr ‖
R] ‖ n[S]) ◦ P = k[EJin n.P1K ‖ R] ‖ n[S] → n[k[EJP1K ‖ R] ‖ S] = P ′.
For α = τ one argues by induction over the derivation of the transition in
order to obtain a redex within P .

21

4. Soundness

We shall first note that τ -labelled transitions characterise reductions. Sec-
ondly, we shall prove that bisimilarity is sound for reduction barb congruence,
i.e. ∼CA ⊆ '.

We have already verified that
τ−→ ⊆→ : this is implied by the conclusion

of Lemma 12. The converse follows by a straightforward inductive analysis
of the structural forms of processes that are the sources of a τ transition.

Proposition 13 (Tau and Reduction). If P
τ−→P ′ then P → P ′. If P → P ′

then ∃P ′′. P ′′ ≡ P ′ such that P
τ−→P ′′.

The chief property that needs to be established for soundness of ∼CA
with respect to ' is congruence of bisimilarity with respect to language
contexts. As a consequence of the construction outlined in §2, this is fairly
straightforward to establish. The case of observational modifications that
combine two separate derivations is the most involved; here this concerns the
rules (InTau) and (OpTau). Because the combination occurs via the ‖ operator,
these rules are considered within a subcase of the proof that bisimilarity is
a congruence with respect to 1Pr ‖ P contexts. The argument is roughly the
following: the target of the derived τ -labelled transition, an application of the
targets of two process-view transitions, can also be obtained by completing
one of the transitions with the result of the other. The inductive hypothesis
can then used in order to match this complete transition, resulting in a
bisimilar state, which can then be again deconstructed.

We shall use the following result:

Lemma 14 (Interaction contexts commute). For all interaction contexts
E , E ′ and terms P, Q we have:

1. EJE ′JP KK ≡ E ′JEJP KK

2. E ′JP K ‖ EJQK ≡ E ′JEJP ‖ QKK

up to α-conversion on E and E ′.

Proof. We first show (by structural induction on E) the subsidiary statements
that (A) EJP K ‖ R ≡ EJP ‖ RK and (B) νn EJP K ≡ EJνn P K (for n 6∈ E).
Then (i) follows by an induction over E and (ii) follows by two applications
of (A).

22

Proposition 15 (Congruence). If P ∼CA Q then CJP K ∼CA CJQK for all
language contexts C.

Proof. Let ∼̂ be the congruence relation defined:

CJP K ∼̂ CJQK whenever P ∼CA Q

for any language context C. To prove the theorem it suffices to show that ∼̂
is a bisimulation up to ≡ . By induction over C we will show that:

CJP K ∼̂ CJQK and CJP K γ−→CA P ′ implies CJQK γ−→CA Q′ such that P ′ ≡∼̂≡ Q′

for some Q′.

Case 1Pr: the base case C = 1Pr holds trivially.

Case in n.C ′, out n.C ′, and open n.C ′: for contexts of the form in n.C, out n.C
and open n.C it is easy to see that there can be no contribution to the tran-
sition CJP K γ−→CA P ′ from P and hence CJQK easily matches this.

Case νn C ′: suppose that C = νn C ′ and suppose also that CJP K γ−→CA P ′.

We know that γ is either τ or α ↓ ~R. For τ the result follows directly from
the inductive hypothesis and so we consider the latter case. We know that

CJP K α↓~R−−→CA P ′ implies that P ′ ≡ (νn A)(~R) for some A. By analysis of the

lts rules we also see that C ′JP K α↓~R−−→CA P ′′ where P ′′ ≡ A(~R). In particular

P ′ ≡ νn P ′′. The inductive hypothesis tells us that C ′JQK α↓~R−−→CA Q′′ for some

Q′′ such that P ′′ ≡∼̂≡ Q′′. It follows that νn C ′JQK γ−→CA νn Q′′ and further,
because ∼̂ and ≡ are congruence relations, that P ′ ≡ νn P ′′ ≡∼̂≡ νn Q′′

as required.

Case n[C ′]: suppose now that C = n[C ′] and that CJP K γ−→CA P ′. There are
a number of subcases to consider:

Subcase γ = τ : here there are two possibilities: either the last lts rule
used was (TauAmb) and the desired result follows easily from the inductive

hypothesis or rule (OuTau) was used and C ′JP K
[out n]−−−→C U where P ′ ≡

U(0) and hence C ′JP K
[out n]↓0−−−−→CA U(0). By the inductive hypothesis we

see that C ′JQK
[out n]↓0−−−−→CA Q′′ for Q′′ such that P ′ ≡ U(0) ≡∼̂≡ Q′′.

Therefore CJQK τ−→CA Q′′ by (OuTau) and (CTau).

23

SubCase γ = [out m] ↓R: Suppose that γ is of the form [out m] ↓R,

that is we have the transitions CJP K
[out m]↓R−−−−−→A(R) for some A such

that A(R) = P ′. By rule (OuAmb) we know that C ′JP K out m−−−→C T where
A ≡ T (0)(n). This means that we have

C ′JP K out m↓0nR−−−−−→CA T (0)(n)(R) ≡ A(R) ≡ P ′

and thus by the inductive hypothesis

C ′JQK out m↓0nR−−−−−→CA Q′ with P ′ ≡∼̂≡ Q′.

From this we obtain C ′JQK out m−−−→C T ′ for some T ′ such that Q′ ≡
T ′(0)(n)(R) and then, by (OuAmb), we have

CJQK
[out m]−−−→C T ′(0)(n)

R−→A Q′

which yields CJQK γ−→CA Q′ as required.

Subcase γ = [in m]↓R: is similar to the previous subcase so we omit
details of this.

Subcase γ = [in n] ↓RSk: suppose instead that γ is [in n] ↓RSk de-

rived using rule (CoInλ). We see that CJP K
[in n]−−→C A for some A such

that A(rin
n (R,S, k)) ≡ P ′ (where by an abuse of notation, rin

n refers
to a suitably abstracted version of this skeleton). Furthermore, by
Lemma 9, we see that, up to ≡ , A is necessarily of the form λZ. Z(C ′JP K).
This means that

P ′ ≡ rin
n (R,S, k)(C ′JP K) ≡ n[k[R ‖ S] ‖ C ′JP K].

Now it follows similarly that CJQK
[in n]↓RSk−−−−−→CA Q′ where

Q′ ≡ rin
n (R,S, k)(C ′JQK) ≡ n[k[R ‖ S] ‖ C ′JQK].

Note though that by definition of ∼̂ we have C ′JP K ∼̂ C ′JQK and so
P ′ ∼̂ Q′ also holds, as required.

Subcase γ = open n ↓ R: this subcase is similar to the previous one
and, again, we omit the details here.

24

Case C ′ ‖ R: finally, suppose that C = C ′ ‖ R and CJP K γ−→CA P ′.

Subcase γ 6= τ : if γ is not τ then this transition must have been generated
using one of the ‖ rules. For those that are superstructural rules the match-
ing transition is easily obtained by applying the inductive hypothesis. The
remaining ‖ rules are substructural: (l‖In),(l‖Ou), (l‖OuAmb) and their symmet-

ric right versions. Suppose then that γ is α ↓ ~R and that the transition has
been derived using one of the substructural rules. We know that

CJP K = (C ′JP K ‖ R)
α−→C A

with P ′ ≡ A(~R) and that this is derived from

C ′JP K α−→C A′ with A ≡ λX. A′(R ‖ X).

Notice that C ′JP K α↓~R+

−−−→CA A′(~R+) where, if ~R is R1, . . . , Rn then ~R+ is defined

to be (R ‖ R1), R2, . . . Rn. Moreover, notice that P ′ ≡ A(~R) ≡ A′(~R+).

Therefore we can apply the inductive hypothesis to see that C ′JQK α↓~R+

−−−→CA Q′

with P ′ ≡∼̂≡ Q′. We also have Q′ ≡ A′′(~R+) for some A′′ such that
C ′JQK α−→C A′′. The substructural rules then allow us to obtain

CJQK α−→C λX. A′′(R ‖ X)
~R−→A (λX. A′′(R ‖ X))(~R) ≡ A′′(~R+)

which yields CJQK γ−→CA Q′ as required.

Subcase γ = τ : we can now assume that γ is τ . If γ is derived from C ′JP K
alone, independently of R, then it is easy to use the inductive hypothesis
to obtain the required match. The more interesting cases arise through an
interaction between C ′JP K and R derived using the (InTau) and (OpTau) rules.
By commutativity of ≡ , there are two such cases for each of these rules. We
only show the proof for the (InTau) rule as the details for the (OpTau) rule are
similar.

Subcase C ′JP K provides an [in n] action: suppose that C ′JP K
[in n]−−→C U

and R
[in n]−−→C A where P ′ ≡ A(U). We know by Lemma 9 that A ≡

λZ. EJZ(R′)K for some R′. We can derive C ′JP K
[in n]↓R′

−−−−→CA U(R′) and

then apply the inductive hypothesis to see that C ′JQK
[in n]↓R′

−−−−→CA Q′′ with
U(R′) ≡∼̂≡ Q′′. It must be the case, however, that Q′′ ≡ U ′(R′) for

25

some U ′ such that C ′JQK
[in n]−−→C U ′. This tells us, by applying (InTau),

that
CJQK = (C ′JQK ‖ R)

τ−→CA A(U ′) ≡ EJU ′(R′)K

Now we know that, by congruence of ∼̂ and ≡ , that

P ′ ≡ A(U) ≡ EJU(R′)K ≡∼̂≡ EJQ′′K ≡ EJU ′(R′)K ≡ A(U ′)

as required.

Subcase C ′JP K provides an [in n] action: for the final case, suppose

that C ′JP K
[in n]−−→C A and R

[in n]−−→C U with P ′ ≡ A(U). In this case, by
Lemma 9 we know that

A ≡ λZ. E ′JZ(P ′′)K and U ≡ λY. EJn[m[R′ ‖ R′′] ‖ Y]K

for some P ′′, m, R, R′′. Thus, writing P0
def
= A(λY. n[m[R′ ‖ R′′] ‖ Y]),

P ′ ≡ A(U) ≡ E ′JEJn[m[R′ ‖ R′′] ‖ P ′′]KK
≡ EJE ′Jn[m[R′ ‖ R′′] ‖ P ′′]KK (by Lemma 14)

≡ EJA(λY. n[m[R′ ‖ R′′] ‖ Y])K
≡ EJP0K

Now, by rule (CoInλ), we know that C ′JP K
[in n]↓R′R′′m−−−−−−−→CA P0 therefore we

can apply the inductive hypothesis to obtain C ′JQK
[in n]↓R′R′′m−−−−−−−→CA Q0

with P0 ≡∼̂≡ Q0. In fact, Q0 ≡ A′(λY. n[m[R′ ‖ R′′] ‖ Y]) for

some A′ such that C ′JQK
[in n]−−→C A′. By applying the rule (InTau) to this

and the co-action from R we get

CJQK = (C ′JQK ‖ R)
τ−→CA A′(U).

Reasoning as above we also obtain A′(U) ≡ EJQ0K. Hence P ′ ≡
EJP0K ≡∼̂≡ EJQ0K ≡ A′(U) as required.

This takes care of all possible cases for C and hence concludes the proof.

26

Theorem 16 (Soundness). P ∼CA Q implies P ' Q.

Proof. We shall show that ∼CA satisfies the defining properties of barbed
congruence. These are (i) preservation of reduction, (ii) preservation of barbs,
and (iii) congruence.

Suppose that P ∼CA Q. We begin by showing (i). Suppose that P → P ′.
We know by Proposition 13, that there exists P ′′ such that P ′′ ≡ P ′ and
P

τ−→P ′. Then there exists a Q′′ such that Q
τ−→Q′′ and P ′′ ∼CA Q′′. Using

Proposition 13 we have Q → Q′′ and, using the fact that ≡⊆∼CA (see
Lemma 11) and transitivity, we are done.

To show (ii), we suppose that P ↓m. By definition, this tells us that
P = EJm[P ′]K for some P ′ such that m is not captured by E . We know then

that P
open m↓0−−−−→R for some R. By bisimilarity, we have Q

open m↓0−−−−→R′ for some
R′. By Lemma 9, Q = FJm[Q′]K for some Q′ and F # m, hence Q↓m.

For (iii) we need to demonstrate that CJP K ∼CA CJQK holds for all C.
This however is the precisely the remit of Proposition 15.

5. Completeness

With soundness of bisimilarity established we shall now consider the con-
verse property: completeness. The central issue here is the observability of
actions. As encapsulated by the statement of Lemma 12, the labels of our lts
have corresponding underlying context-triggered reductions. Completeness
relies on the converse relationship; a context-triggered reduction (or series of
reductions and barb observations) implying the existence of a transition.

Completeness needs to be checked manually—our systematic derivation
technique as outlined in §2 does not guarantee that it holds. Indeed, for an
action α to be observable there must exist a suitable predicate on terms that
(i) characterises when a term is the source of an α-labelled transition and
(ii) is preserved by contextual equivalence (see Proposition 20). Whether or
not this is the case for particular α depends on the language at hand.

Essentially, one needs to show that each kind of label has a context that
characterises it. This is a stronger requirement than that of Lemma 12
which exhibits a relationship between contexts and labels in one direction
only: every labelled transition has a corresponding context in which there
is a reduction to the right-hand side. However, a reduction in this context
does not necessarily imply the existence of the labelled transition. In order
for this to occur, contexts must contain more information.

27

When such a contextual condition does not exist for a particular label,
one can use an additional Honda-Tokoro (HT) rule in the sos specification
to ensure its existence and hence completeness of bisimilarity for contextual
equivalence. For the background and examples of such rules see [30]. In the
setting of ambients they are needed for [in n] and [out n] transitions only (see
Fig. 5) and account for the following situation: the environment provides an
appropriate context χ (as in Lemma 12) but the process does not make use
of it, thus χ is retained in the result of the interaction. As an example of the
necessity, in general, of the HT rules for completeness, consider:

T1
def
=!n[0] ‖ νk (k[in n.0]) and T2

def
=!n[0] ‖ τ

where τ
def
= νm (open m.0 ‖ m[0]). Processes T1 and T2 are reduction

barb congruent. It is not difficult to check this directly using the fact that
νk k[0] ∼CA 0.

Nevertheless T1 �CA T2 because the T1 can do a [in n]↓R transition that
cannot be matched by T2. Instead, it does hold that T1 ∼(C+HT)A T2:

T1
[in n]↓R−−−−→!n[0] ‖ νk (n[k[0] ‖ R]) is matched by T2

[in n]↓R−−−−→!n[0] ‖ n[R].

Remark 17 (Completeness and finite processes). It is unclear whether bisim-
ilarity on CA is complete with respect to reduction barb congruence in the
finite language—similar questions have been studied in [30] in a simpler set-
ting. Indeed, based on the examples therein, it is likely that CA is already
complete. Simply adding replication, however, results in a language for which
the CA is not complete, as illustrated by the preceding example. Indeed, in
the full ambient calculus, an ambient’s ability to migrate is unobservable.3

We would thus consider completeness of bisimilarity on CA for the finite
language, speaking colloquially, as ‘completeness by accident’ and not an
important fact: for us the ‘essence’ of completeness lies in a local contextual
characterisation of actions in the spirit of Proposition 20. Indeed, an lts on
which bisimilarity is proved complete in this sense enjoys the property that
its actions remain observable under various language extensions.

3This fact has been observed in [19] and a suitable adaptation of the definition of
bisimulation is given to account for this. For aesthetic reasons we prefer to use ordinary
bisimulation and thus use a suitable modification of the Honda-Tokoro [16] style rules for
strong equivalences instead.

28

P
τ−→P ′

(a[In])

P
[in n]−−→λY. P ′‖n[Y]

P
τ−→P ′

(a[Out])

P
[out n]−−−→λY. n[P ′‖Y]

Figure 5: Honda-Tokoro rules HT for unobservable actions

The following lemma states that adding the HT rules (see Fig. 5). does
not generate new τ -labelled transitions. It is needed to show the soundness
and completeness of the extension.

Lemma 18. τ -labelled transitions in C +HT agree with reductions.

Proof. Induction on the number of HT rules present in the derivation of
a τ -transition, relying on the conclusion of Proposition 13. Essentially, we
show that any use of the HT rules can be cut from any given derivation.

For example, we shall show that any derivation with k + 1 applications of
(a[In]) can be replaced with an equivalent derivation with k applications. Let
us consider the final use of (a[In]). To be discharged, the resulting [in n] needs
to be combined with a [in n] in essentially the following derivation snippet:

P
τ−→P ′

(a[In])

P
[in n]−−→λX. P ′‖n[X]

(CoIn)

n[Q]
[in n]−−→λZ. Z(Q)

(InTau)

P‖n[Q]
τ−→P ′‖n[Q]

which can be replaced simply by

P
τ−→P ′

(l‖ Tau)

P‖n[Q]
τ−→P ′‖n[Q]

Indeed, bisimilarity ∼(C+HT)A on the obtained lts remains sound for
contextual equivalence.

Proposition 19 (Soundness, (C +HT)A). P ∼(C+HT)A Q implies P ' Q.

Proof. It is enough to show that bisimilarity remains a congruence, since the
remainder of the proof of Theorem 16 is unaffected. Moreover the conclusion

29

of Lemma 18 tells us that τ -labelled transitions coincide with reductions, and
so in particular with the τ -labelled transitions in CA.

It suffices then to consider the possible ways in which HT rules affect the
proof of Proposition 15. We must inspect each case where the rules (a[In])

and (a[Out]) can be applied.

First, for any context C, if CJP K α↓R−−→DJP ′K is derived from either (a[In])

or (a[Out]) then also CJP K τ−→P ′. But this is matched by CJQK τ−→Q′ such that

P ′ ∼̂ Q′; then CJP K α↓R−−→DJQ′K and, by definition of ∼̂, DJP ′K ∼̂ DJQ′K.
Now consider the case C = C ′ ‖ R where CJP K τ−→P ′ and the sub case

where C ′JP K provides a [in n] action:

C ′JP K
[in n]−−→U and R

[in n]−−→A with P ′ ≡ A(U)

But then R = EJn[R′]K and A = λZ. EJZ(R′)K; and so A(U) = EJU(R′)K.

Now C ′JP K
[in n]↓R′

−−−−→U(R′) and with the ind. hyp. C ′JQK
[in n]↓R′

−−−−→Q′ ∼̂ U(R′).
Suppose that the latter transition was derived with (a[In]): then C ′JQK τ−→Q′′

and Q′ = Q′′ ‖ n[R′]. But now

CJQK = C ′JQK ‖ R

= C ′JQK ‖ EJn[R′]K τ−→Q′′ ‖ EJn[R′]K ≡ EJQ′K ∼̂ EJU(R′)K = P

A similar, if technically simpler, argument applies in the subcase where C ′JP K
provides a [out n] action.

The final case is C = n[C ′] with CJP K τ−→P ′ deriving from a C ′JP K
[out n]−−−→U

action. Then P ′ = U(0) and thus we have C ′JP K
[out n]↓0−−−−→P ′. This, using the

ind. hyp., is matched with C ′JQK
[out n]↓0−−−−→Q′ with P ′ ∼̂ Q′. If the latter arises

from an application of (a[Out]) then we have C ′JQK τ−→Q′′ and Q′ = n[Q′′ ‖
0] ≡ n[Q′′]. But then CJQK = n[C ′JQK]

τ−→n[Q′′] ≡ Q′ ∼̂ P ′.

Concerning the remaining possible labels not considered by HT rules, we
need to show that each complete labelled transition can be characterised by
a predicate that is stable under reduction barbed congruence. This, unfortu-
nately, is technical, calculus-specific work and is not particularly illuminating.
The appendix is devoted to obtaining the right predicates, as summarised by
the following:

30

Proposition 20. Lemmas 22, 23, 24, 25 and 26 in the appendix concern all
the non-τ labels:

α ∈ {open n↓R, open n↓R, [in n]↓RSk,

in n↓RkS, out n↓RkS, [in n]↓R, [out n]↓R}}

and for each such α introduce a binary predicate Φα(P, P ′) on terms that
characterises labelled transitions in the following sense:

• if P
α−→P ′ then Φα(P, P ′);

• if Φα(P, P ′) then ∃P ′′ ≡ P ′ such that P
α−→P ′′.

Additionally, the predicates Φα are stable under barbed congruence in the
following sense: if P ' Q and there exists P ′ such that Φα(P, P ′) then there
exists Q′ such that P ′ ' Q′ and Φα(Q, Q′).

These individual characterisations allow us to easily prove completeness.

Theorem 21 (Completeness). P ' Q implies P ∼(C+HT)A Q.

Proof. We need to show that ' is a bisimulation. Suppose that P
α−→P ′:

• if α = τ then the result follows immediately from Lemma 18;

• otherwise we use the appropriate predicate Φα (see Proposition 20).
Indeed, if P

α−→P ′ then Φα(P, P ′). Then since P ' Q, there exists Q′

such that Q ' Q′ and Φα(Q, Q′). Then there exists Q′′ ≡ Q′ such that
Q

α−→Q′′. Using the fact that ≡⊆' and the transitivity of ' we have
P ′ ' Q′′.

6. Conclusions, related and future work.

The introduction of the ambient calculus in [8] has spawned a consider-
able amount of research on the topic regarding variants of the calculus (e.g.
[12, 11, 4]), type systems (e.g. [20, 7, 5]) and implementation details (e.g.
[14, 25]). However, there has been relatively little work on labelled charac-
terisations. An early attempt by Cardelli and Gordon [6] was abandoned in
favour of a simpler approach in [9]. Interestingly, the structural rules and

31

use of abstractions in the meta-language was already present in [6] where the
authors seemed to encounter difficulties in relating their structural labels to
contexts. This was particularly true for co-actions. The approach that we
take in this paper resolves this issue.

Subsequent to [6, 9], Merro and Zappa-Nardelli [19] designed an lts and
established a full abstraction result using a form of context bisimilarity. Their
paper is ostensibly the approach most closely related to ours in terms of
results, but the emphasis in our research is on a systematic derivation of the
lts. Indeed, our belief is that the main significance of our contribution is not
the introduction of a new lts for ambients but rather a step towards generally
applicable techniques for the derivation of labelled transition systems. In this
we were fortunate in having had the model in [19] to use as a comparison
and sanity check for our own semantics.

We hope that the benefits of our approach will become clear once one
has compared the two lts models: Merro and Zappa-Nardelli produced an
lts that built on the initial attempts by Cardelli and Gordon [6] (that al-
ready contained a reasonable account of the structural transitions towards
an inductive definition of the τ -reduction relation) by analysing the contex-
tual interactions provided by an arbitrary environment. Doing this neces-
sitated a restriction to system level ambients—that is, ambients that were
all boxed at top level—and a use of a piece of meta-syntax ◦ to allow ar-
bitrary environmental processes to be re-inserted into terms. The latter of
these requirements resurfaces in our work through the use of the λ-calculus
meta-language but the former, the restriction to systems, is avoided by pro-
viding context-oriented structural transitions in the lts C. The effect of
this is that all of our (completed) labelled transitions are suitable for use in
the definition of bisimulation as opposed to only the class of env-actions in
[19]. Notice, for example, that our base rules (In) and (Ou) of Fig. 2 retain
the structure of the interacting context and term. This structure is carried
in the rules (InAmb) and (OuAmb) whereas Merro and Zappa-Nardelli’s related
rules, (Enter Shh) and (Exit Shh), in [19] serve primarily to recover this necessary
structure. Our treatment of co-actions, in rules (coInλ) and (coOpenλ) of Fig. 4,
by completing them with skeletal structure as well as missing parameters,
is mirrored in the rules (Co-Enter) and (Open) of [19] although the restriction
to systems complicates the latter of those. The remaining difference lies in
the use of the name enclosing the migrating ambient in the (Enter) and (Exit)

rules. They are included as part of the label in [19] and therefore reflect a
slightly finer analysis of observability in ambients. However, rules (Enter Shh)

32

and (Exit Shh) are then necessary because this name is not always observable.
Our equivalent rules (InAmb) and (OutAmb) do not record the name of an enclos-
ing ambient in the label because this information is not determined by the
context and the name’s identity must be subsequently discovered by some
context parameter processes. Unlike [19] we deal with the unobservability of
[in n] and [out n] actions using Honda Tokoro style [16] rules in Fig. 5 rather
than adopting a non-standard definition of bisimulation in the style of [1].
In conclusion, our derived lts is pleasingly similar to, and, we believe, con-
ceptually cleaner than its counterpart in [19] that represents the state of the
art for this language to date.

In addition to the work mentioned above there have been a number of
lts models for variants of the ambient calculus [13, 11, 12, 4]. These models
all use a variant of the language for which the contextual observations of co-
actions are much clearer than in the pure ambient model and therefore the
co-action labelled transitions are more easily defined. It will be worthwhile
to see how our methodology fares when applied to these variants.

Finally, it is interesting to note that Sewell has already considered ap-
plying his contexts-as-labels approach [33] to the ambient calculus. We note
that this work already suggests using (non-inductive versions of) our rules
(In), (Out), and (Open). Similarly, Jensen and Milner [17] use the context-as-
labels approach to provide a derived lts for the ambient calculus via an
encoding to bigraphs. This lts is also non-inductive and the lack of a de-
tailed analysis of the resulting RPOs in [17] makes it difficult for us to find
any striking similarities with our sos rule-set and lts.

In this paper and in [28] we have considered strong bisimilarity. Because
Proposition 13 holds and because our bisimulation equivalence is defined over
complete actions CA, in principle it should be possible to smoothly lift our
soundness and completeness results to weak bisimilarity. Notably, for weak
transitions

P
τ−→CA · · · α−→CA · · · τ−→CA P ′

we shall only ever need to decompose the strong α transition in to its process
and context views. In particular, to characterise the weak equivalences, it is
not the case that we shall need to consider weak transitions from the C and
A transitions systems separately. The difficulties that may arise in the weak
case lie in providing contexts that witness weak transitions for the proof of
completeness.

The separation of process and context views in our approach means that

33

our bisimulation equivalences are context bisimulations. This is due to the
completion of labels by considering arbitrary context processes. As shown
in [28], it is sometimes possible to exploit this separation in order to refine
the context view so that only certain archetypal context processes need be
supplied. An analogous refinement for ambients would be desirable, albeit
very difficult; we believe that our lts serves as a good basis from which to
do this.

Having experimented on the π-calculus [28] and the ambient calculus, we
now intend to develop our method for deriving transition systems in a general
setting and establish soundness and completeness results for a wider range
of calculi.

Acknowledgment. We thank the anonymous referees for their useful remarks,
which have helped us to significantly improve the presentation of the paper.

References

[1] R. Amadio, I. Castellani, D. Sangiorgi, On bisimulations for the asyn-
chronous pi-calculus, Theor. Comput. Sc. 195 (2) (1998) 291–324.

[2] J. Bergstra, J. Klop, Algebra of communicating processes with abstrac-
tion, Theor. Comput. Sc. 37 (1) (1985) 77–121.

[3] F. Bonchi, F. Gadducci, G. Monreale, Reactive systems, barbed seman-
tics, and the mobile ambients, in: Proc. FoSSaCS, vol. 5504 of LNCS,
Springer, 2009, pp. 272–287.

[4] M. Bugliesi, S. Crafa, M. Merro, V. Sassone, Communication interfer-
ence in mobile boxed ambients, Inf. Comput. 205 (2007) 1235–1273.

[5] L. Cardelli, G. Ghelli, A. Gordon, Mobility types for mobile ambients,
in: Proc. ICALP, vol. 1644 of LNCS, Springer, 1999, pp. 230–239.

[6] L. Cardelli, A. Gordon, A commitment relation for the ambient calculus,
unpublished notes (1996).

[7] L. Cardelli, A. Gordon, Types for mobile ambients, in: Proc. PoPL,
ACM Press, 1999, pp. 79–92.

[8] L. Cardelli, A. Gordon, Mobile ambients, Theor. Comput. Sc. 240/1
(2000) 177–213.

34

[9] L. Cardelli, A. Gordon, Equational properties of mobile ambients, Math.
Struct. Comput. Sc. 13 (3) (2003) 371–408.

[10] U. Engberg, M. Nielsen, A calculus of communicating systems with label
passing, Tech. Rep. DAIMI PB-208, University of Aarhus (May 1986).

[11] Y. Fu, Fair ambients, Acta Inf. 43 (8) (2007) 535–594.

[12] P. Garralda, E. Bonelli, A. Compagnoni, M. Dezani-Ciancaglini, Boxed
Ambients with Communication Interfaces, Math. Struct. Comput. Sc.
17 (2007) 1–59.

[13] M. Hennessy, M. Merro, Bisimulation congruences in safe ambients,
ACM T. Progr. Lang. Sys. 28(2) (2006) 290–330.

[14] D. Hirschkoff, D. Pous, D. Sangiorgi, An efficient abstract machine for
safe ambients, J. Logic Algebr. Progr. 71 (2007) 114–149.

[15] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall,
1985.

[16] K. Honda, M. Tokoro, An object calculus for asynchronous communica-
tion, in: Proc. ECOOP, vol. 512 of LNCS, Springer, 1991, pp. 133–147.

[17] O. Jensen, R. Milner, Bigraphs and mobile processes, Tech. Rep. 570,
Computer Laboratory, University of Cambridge (2003).

[18] J. Leifer, R. Milner, Deriving bisimulation congruences for reactive sys-
tems, in: Proc. Concur, vol. 1877 of LNCS, Springer, 2000, pp. 243–258.

[19] M. Merro, F. Z. Nardelli, Behavioural theory for mobile ambients, J.
ACM 52 (6) (2005) 961–1023.

[20] M. Merro, V. Sassone, Typing and subtyping mobility in boxed ambi-
ents, in: Proc. Concur, vol. 2421 of LNCS, Springer, 2002, pp. 304–320.

[21] R. Milner, A Calculus of Communicating Systems, vol. 92 of LNCS,
Springer, 1980.

[22] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, II, Inf.
Comput. 100 (1) (1992) 41–77.

35

[23] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. ICALP, No. 623
in LNCS, 1992, pp. 685–695.

[24] F. Pfenning, C. Elliott, Higher-order abstract syntax, in: Proc. PLDI,
vol. 23(7) of SIGPLAN Notices, 1988, pp. 199–208.

[25] A. Phillips, Specifying and implementing secure mobile applications in
the channel ambient system, Ph.D. thesis, Imperial College London
(April 2006).

[26] G. D. Plotkin, A structural approach to operational semantics, J. Logic
Algebr. Progr. 60-61 (2004) 17–139, originally appeared as Technical
Report DAIMI FN-19, University of Aarhus, 1981.

[27] J. Rathke, V. Sassone, P. Sobociński, Semantic barbs and biorthogonal-
ity, in: Proc. FoSSaCS, vol. 4423 of LNCS, Springer, 2007, pp. 302–316.

[28] J. Rathke, P. Sobociński, Deconstructing behavioural theories of mobil-
ity, in: Proc. TCS, vol. 273 of IFIP, Springer, 2008, pp. 507–520.

[29] J. Rathke, P. Sobociński, Deriving structural labelled transitions for
mobile ambients, in: Proc. Concur, vol. 5201 of LNCS, Springer, 2008,
pp. 462–476.

[30] J. Rathke, P. Sobociński, Making the unobservable, unobservable, Elec-
tron. Notes Theor. Comput. Sc. 229 (3) (2009) 131–144.

[31] V. Sassone, P. Sobociński, Deriving bisimulation congruences using 2-
categories, Nordic J. Comput. 10 (2) (2003) 163–183.

[32] V. Sassone, P. Sobociński, Reactive systems over cospans, in: Proc.
LiCS, IEEE Press, 2005, pp. 311–320.

[33] P. Sewell, From rewrite rules to bisimulation congruences, Theor. Com-
put. Sc. 274 (1-2) (2002) 183–230, extended version of a Concur ’98
conference paper.

36

Appendix

Here we obtain the necessary predicates described in Proposition 20.
While the proofs are fairly technical, there are no sophisticated techniques
used and most of the work is done by the structural lemmas (Lemmas 9
and 10).

The only real difficulty is in ensuring that the context-view contribution
in the label does not take part in the interaction—we solve this problem
by inhibiting its participation. Basically, the contributed processes are not
used directly but are guarded by an open prefix that destroys a fresh-named

ambient. Let {P}i (read “inhibit P”)
def
= i[] ‖ open i.P . Clearly {P}i↓i and

{P}i → P . To ascertain that such an inhibited P does not take part, one
checks for the presence of the ambient i after the interaction takes place.

Lemma 22 (Contextually characterising open and open). Let:

χopen n↓R
def
= 1Pr ‖ n[{R}i], χopen n↓R

def
= 1Pr ‖ open n.{R}i, and

Φ(P, P ′)
def
= ∃P1. χαJP K → P1, P1↓i, P1 → P ′, P ′6 ↓i.

Then for α ∈ {open n↓R, open n↓R}:

(i) if P
α−→P ′ then Φ(P, P ′);

(ii) if Φ(P, P ′) then ∃P ′′ ≡ P ′ such that P
α−→P ′′.

Proof. (i) If P
open n↓R−−−−→P ′ then P = EJopen n.QK and

P ′ ≡ (λY. EJP ′ ‖ YK)(R) (Lemma 10).

Now χopen n↓RJP K = EJopen n.QK ‖ n[{R}i] = E ′Jopen n.Q′ ‖ n[{R}i]K →
E ′JQ′ ‖ {R}iK = (EJQK ‖ {R}i) ↓i and EJQK ‖ {R}i → P ′. Similarly if

P
open n↓R−−−−→P ′ then P = EJn[Q]K and P ′ ≡ (λY. EJY ‖ QK)(R). Then we

have χopen n↓RJP K = EJn[Q]K ‖ open n.{R}i = E ′Jn[Q′] ‖ open n.{R}iK →
E ′JQ′ ‖ {R}iK = EJQK ‖ {R}i ↓i. Moreover EJQK ‖ {R}i → P ′. In both
instances, P ′ does not contain i and so cannot barb on it in any interaction
context.

(ii) Suppose that χopen n↓RJP K = P ‖ n[{R}i] → P1 such that P1 ↓i. Since
n[{R}i] cannot reduce without destroying the barb i and n[{R}i] 6 ↓i, the
reduction must involve both P and n[{R}i]. The unique possibility that

37

leaves i at top level is P = EJopen n.QK and so we have P1 ≡ EJQK ‖ {R}i.
Now if P1 → P ′ such that P ′ 6 ↓i then it follows that the unique possible
reduction is P1 → EJQK ‖ R = (λY. EJQ ‖ YK)(R). Then by Lemma 10, we

have P
open n↓R−−−−→P ′′ for some P ′′ ≡ P ′.

Similarly, if χopen n↓RJP K = P ‖ open n.{R}i → P1↓i then P = EJn[Q]K
and P1 = EJQK ‖ {R}i. Now if P1 → P ′ 6 ↓i then P ′ = EJQK ‖ R ≡
λY. EJY ‖ QK(R). We thus have P

open n↓R−−−−→P ′.

Lemma 23 (Contextually characterising [in]). Let:

χ
def
= 1Pr ‖ k[in n.{R ‖ S}i1], ξ

def
= 1Pr ‖ open n.open k.{0}i2 , and

Φ(P, P ′)
def
= ∃P1, P2. χJP K → P1, ξJP1K → 2P2,

P2↓i1,i2 , P1 → P ′, ∀θ. (i1 /∈ θ) → (θJP ′K 6 ⇓i1).

Then:

(i) if P
[in n]↓RSk−−−−−→P ′ then Φ(P, P ′);

(ii) if Φ(P, P ′) then ∃P ′′ ≡ P ′ such that P
[in n]↓RSk−−−−−→P ′′.

Proof. (i) If P
[in n]↓RSk−−−−−→P ′ then P = EJn[P †]K and

P ′ ≡ (λYZx. EJn[x[Y ‖ Z] ‖ P †]K)(RSk).

Then

χJEJn[P †]KK = EJn[P †]K ‖ k[in n.{R ‖ S}i1]

= E ′Jn[P ‡] ‖ k[in n.{R ‖ S}i1]K → E ′Jn[P ‡ ‖ k[{R ‖ S}i1]]K.

Now

ξJE ′Jn[P ‡ ‖ k[{R ‖ S}i]]KK
≡ E ′Jn[P ‡ ‖ k[{R ‖ S}i1]] ‖ open n.open k.{0}i2K

→ EJP † ‖ k[{R ‖ S}i] ‖ open k.{0}jK
→ EJP † ‖ {R ‖ S}i ‖ {0}jK ↓i1,i2 .

38

Clearly also E ′Jn[P ‡ ‖ k[{R ‖ S}i1]]K → P ′ and P ′ does not contain in-
stances of i1.

(ii) Suppose χJP K = P ‖ k[in n.{R ‖ S}i1] → P1 and ξJP1K = P1 ‖
open n.open k.{0}i2 → 2P2 such that P2 ↓i1,i2 . First notice that P1 6 ↓i1 , since
the only reduction that “unlocks” the barb is the insertion of the k ambient
into an n ambient, and in that case the ambient is not at the top level. Now
because P2 ↓i2 we must have either

P1 ≡ E ′Jn[Q1] ‖ k[Q2]K or P1 ≡ E ′Jn[k[Q1] ‖ Q2]K

Note that, since P1 6 ↓i1 , we have that E ′J0K 6 ↓i1 . In the first case we have
P2 = E ′JQ1 ‖ Q2 ‖ {0}jK. Since also P2↓i1 we must have either Q1 ↓i1 or
Q2 ↓i1 . Then an examination of the possible targets of the first reduction then
confirms that the first choice for P1 is impossible. Hence P1 ≡ E ′Jn[k[Q1] ‖
Q2]K and moreover, Q1 ≡ E ′′[{R ‖ S}i1]. This leaves just one possible reduc-
tion, and we conclude that P1 ≡ EJn[k[{R ‖ S}i] ‖ Q2]K, which means that
P ≡ EJn[Q2]K. Finally, it is again easy to see that the only possible reduc-
tion from P1 which renders i1 invisible to any context is the reduction that
destroys it, ie P ′ ≡ EJn[k[R ‖ S] ‖ Q2]K. It follows from the Lemma 10

that P
[in n]↓RSk−−−−−→ (λYZx. EJn[x[Y ‖ Z] ‖ Q2]K)(RSk) ≡ P ′.

Lemma 24 (Contextually characterising in). Let:

χ
def
= k[1Pr ‖ {R}i2] ‖ n[{S}i1],

ξ+ def
= 1Pr ‖ open n.open k.{0}i3 , ξ−

def
= 1Pr ‖ open k.{0}i3

Φ(P, P ′)
def
= ∃P1, P2. χJP K → P1, ξ+JP1K → 2P2↓i1,i2,i3 ,

∀T. ξ−JP1K → T, T 6 ↓i2 ,i3 , P1 → 2P ′, ∀θ. (i1, i2 /∈ θ) → (θJP ′K 6 ↓i1 ,i2)

Then:

(i) if P
in n↓RkS−−−−→P ′ then Φ(P, P ′);

(ii) if Φ(P, P ′) then ∃P ′′ ≡ P ′ such that P
in n↓RkS−−−−→P ′′.

Proof. (i) If P
in n↓RkS−−−−→P ′ then P = EJin n.QK and

P ′ ≡ (λXxY. n[x[EJQK ‖ X] ‖ Y])(RkS).

39

So χJP K = k[EJin n.QK ‖ {R}i2] ‖ n[{S}i1] → n[k[EJQK ‖ {R}i2] ‖ {S}i1].
Now substituting the right-hand side into ξ+ gives n[k[EJQK ‖ {R}i2] ‖
{S}i1] ‖ open n.open k.{0}i3 → 2EJQK ‖ {R}i2 ‖ {S}i1 ‖ {0}i3 ↓i1,i2,i3 . Using
ξ− instead gives n[k[EJQK ‖ {R}i2] ‖ {S}i1] ‖ open k.{0}i3 which cannot
reduce to reveal i3 since there is no top-level k ambient. Finally, n[k[EJQK ‖
{R}i2] ‖ {S}i1] → 2P ′ which does not contain instances of i1, i2.

(ii) Consider the possible ways of finding a redex in χJP K = k[P ‖
{R}i2] ‖ n[{S}i1], with the caveat that no part of {R}i2 and {S}i1 may be
used, as this would destroy, respectively, i2 and i1 which need to be observed
subsequently.

If the reduction is internal to P then the result is of the form k[P † ‖
{R}i2] ‖ n[{S}i1]. But ξ−Jk[P † ‖ {R}i2] ‖ n[{S}i1]K → P † ‖ {R}i2 ‖
n[{S}i1] ‖ {0}i3 ↓ i2, i3. Alternatively, P may contain a top level ambient
of the form l[EJout k.P †K], in that case the reactum is l[EJP †K] ‖ k[P ‡ ‖
{R}i2] ‖ n[{S}i1] which again exposes the barb i2 after interaction with
ξ−. The only remaining possibility is P = EJin n.QK which implies that
P1 ≡ n[k[EJQK ‖ {R}i2] ‖ {S}i1] which clearly has the correct behaviour
wrt to ξ+ and ξ−. Also, the only possibility to hide i1, i2 with two reductions
is to destroy them, hence P ′ ≡ n[k[EJQK ‖ R] ‖ S] and the correct labelled
transition follows via Lemma 10.

Lemma 25 (Contextually characterising out). Let:

χ
def
= n[k[1Pr ‖ {R}i1] ‖ {S}i2], ξ

def
= 1Pr ‖ open k.open n.{0}i3

Φ(P, P ′)
def
= ∃P1, P2, P3. χJP K → P1, ξJP1K → P2, P2 → P3,

P2↓i1 , P3↓i1,i2,i3 , P1 → 2P ′, ∀θ. (i1, i2 /∈ θ) → (θ[P ′] 6 ⇓i1,i2).

Then:

(i) if P
out n↓RkS−−−−−→P ′ then Φ(P, P ′);

(ii) if Φ(P, P ′) then ∃P ′′ ≡ P ′ such that P
out n↓RkS−−−−−→P ′′.

Proof. (i) if P
out n↓RkS−−−−−→P ′ then P = EJout n.QK and

P ′ ≡ (λXxY. x[EJQK ‖ X] ‖ n[Y])(RkS).

40

Then

χJP K = n[k[EJout n.QK ‖ {R}i1] ‖ {S}i2]

→ k[EJQK ‖ {R}i1] ‖ n[{S}i2].

Inserting the right-hand side into ξ yields

k[EJQK ‖ {R}i1] ‖ n[{S}i2] ‖ open k.open n.{0}i3

→ EJQK ‖ {R}i1 ‖ n[{S}i2] ‖ open n.{0}i3 ↓i1

→ EJQK ‖ {R}i1 ‖ {S}i2 ‖ {0}i3 ↓i1,i2,i3 .

Also, k[EJQK ‖ {R}i1] ‖ n[{S}i2] → 2P ′

(⇐) Consider the possible ways finding a redex in χJP K = n[k[P ‖
{R}i1] ‖ {S}i2]. Note that R and S cannot take any part in the first inter-
action as this would involve the destruction of barbs i1 and i2. If the redex
is entirely contained in P (ie P → P †) then, after the reduction we have
a term n[k[P † ‖ {R}i1] ‖ {S}i2] which does not have k at top level and
hence cannot interact with ξ. The second possibility is that P contains a
top-level ambient of the form l[EJout k.P †K], in this case after the reduc-
tion we have n[l[EJP †K] ‖ k[P ‡ ‖ {R}i1] ‖ {S}i2] that fails to interact
with ξ for the same reason. The final possibility is that P = EJout n.QK
in which case P1 ≡ k[EJQK ‖ {R}i1] ‖ n[{S}i2]—the only choice that has
the correct behaviour wrt ξ. The only two reductions which hide the barbs
i1 and i2 from any context, therefore, are those which destroy them, hence
P ′ ≡ k[EJQK ‖ R] ‖ n[S] whence the required transition follows from the
Lemma 10.

Lemma 26 (Contextually characterising [in] and [out]). Let:

χ[in n]↓R
def
= 1Pr ‖ n[{R}i1], χ[out n]↓R

def
= n[1Pr ‖ {R}i1], ξ

def
= 1Pr ‖ open n.{0}i2

Φα
def
= ∃P1, P2. χαJP K → P1 6↓i1 , ξJP1K → P2↓i1,i2 ,

P1 → P ′, ∀θ.(i1 /∈ θ) → (θJP ′K 6 ⇓i1)

Then, for α ∈ {[in n]↓R, [out n]↓R} we have:

(i) if P
α−→P ′ then Φα(P, P ′);

41

(ii) if Φα(P, P ′) then there exists P ′′ ≡ P ′ such that P
α−→P ′′.

Proof. (i) P
[in n]↓R−−−−→P ′: if the derivation does not feature the use of a HT -rule

then Lemma 10 applies: for some m, P = EJm[E ′Jin n.QK]K and

P ′ ≡ (λY. EJn[m[E ′JQK] ‖ Y]K)(R).

We have

χ[in n]↓RJEJn[E ′Jin n.QK]KK = EJm[E ′Jin n.QK]K ‖ n[{R}i1]

→ EJn[m[E ′JQK] ‖ {R}i1]K.

Plugging in ξ:

EJn[m[E ′JQK] ‖ {R}i1]K ‖ open n.{0}i2 → m[E ′JQK] ‖ {R}i1 ‖ {0}i2 ↓i1,i2

and EJn[m[E ′JQK] ‖ {R}i1]K → P ′.
On the other hand, if ([aIn]) is used then P

τ−→Q and P ′ = Q ‖ n[R].
Hence, using Lemma 18, χ[in n]↓RJP K → χ[in n]↓RJQK = Q ‖ n[{R}i1]. Now
ξJQ ‖ n[{R}i1]K = Q ‖ n[{R}i1] ‖ open n.{0}i2 → Q ‖ {R}i1 ‖ {0}i2↓i1,i2 .
Also, Q ‖ n[{R}i1] → P ′.

A similar calculation can be carried for the case α = [out n]↓R.

(ii) Suppose that χ[in n]↓RJP K → P1, ξJP1K → P2 ↓i1,i2 , P1 → P ′, and
∀θ.(i1 /∈ θ) → (θ[P ′] 6 ⇓i1). Examining χ[in n]↓RJP K = P ‖ n[{R}i1], the only
possible reductions that do not involve {R}i1 and that do not result in the
barb i1 at top level are: (1) an internal reduction in P → Q in which case
P1 ≡ Q ‖ n[{R}i1]; the only subsequent reduction that hides the i1 ambient
from any context is the reduction that destroys it, hence P ′ ≡ Q ‖ n[R].
But then there is Q′ ≡ Q such that P

τ−→Q′ and so via an application

of ([aIn]), P
[in n]↓R−−−−→P ′′, where P ′′ = Q′ ‖ n[R] ≡ Q ‖ n[R] ≡ P ′. (2)

P ≡ EJm[E ′Jin n.QK]K and P1 ≡ n[EJm[E ′JQK]K ‖ {R}i1]. Then we must
have P ′ ≡ n[EJm[E ′JQK]K ‖ R] and so there exists P ′′ ≡ P ′ such that

P
[in n]↓R−−−−→P ′′.
Again, a similar calculation can be carried out for α = [out n]↓R.

42

