Soft-Restriction Approach for Traffic Management under Disaster Rescue Situations

Hiroki Matsui Kiyoshi Izumi Itsuki Noda
National Institute of Advanced Industrial Science and Technology (AIST)
Traffic under Disaster Rescue Situations

- traffic resources become tight
- unusual and huge traffic
- must guarantee traffic of emergency vehicles
 - Emergency Route: exclusive route for emergency vehicles
 - Detour Route: for public vehicles

Issue

- How can the authorities field public vehicles?
Soft-Restriction Approach

Traditional Approach

- Useful routes are only for emergency vehicles.
- Different kinds of vehicles use different roads.

Soft-Restriction Approach

- Public vehicles can use useful routes. (minimal emergency routes)
 - Public vehicles get penalty while throughput of emergency vehicles is low.
- Sign which shows whether throughput of emergency vehicles is low
Road Network

- OD of all vehicles: O → D

Diagram:

[Diagram showing road network with nodes O, D, D1, T, S, and U connected by lines]

Hiroki Matsui
Road Network – Traditional Approach

- OD of all vehicles: O → D
- S-D1: emergency route
- S-U-V-D1-D2: detour route
Road Network – Soft-Restriction Approach

- OD of all vehicles: O → D
- T-D1: emergency route
- T-V-D1-D2, S-U-V-D1-D2: detour route
Average Travel Time of Vehicles

- User Equilibrium: 5.75 : 4.25
- Traditional approach: 0 : 10 (fixed)
Model

- **Vehicles**
 - Emergency Vehicle (EV)
 - Public Vehicle (PV)
 * go to their destination as soon as possible

- **Traffic Control Center**
 - ensure throughput of EVs by using ‘penalty’ and ‘sign’
Traffic Control Center

Purpose

1. keep the recent average travel time of EVs under a threshold (200 sec.)
2. reduce costs of the management
Management policy

• Penalty
 – give penalties b with a probability p to travel time of PVs
 * which select the wide detour route (S-T)
 * while the recent average travel time of EVs is longer than the threshold
 – Cost = $b \times n$
 * n: number of times giving penalties

• Sign
 – is showed to PVs at deciding their route while the recent average travel time of EVs is longer than the threshold
Emergency Vehicle Agent

- go from O to D through the emergency route T-D1
- EVs have no option for actions.
Public Vehicle Agent

- repeat the travel from O to D
- action: select the detour route, wide or narrow
 - based on evaluation functions for each sign state
- learning: update the evaluation functions
Information for PV to Decide Route

- C: past experience
- L: number of vehicles on the lane of O-S near each route

Experimental Settings about information for PV

1. C
2. $C + L$
Evaluation Function of Each Route

1. C
 \[\tilde{T}(r, s) = C_{r,s} \]

2. $C + L$
 \[\tilde{T}(r, s, L_r) = K_{r,s}L_r + C_{r,s} \]

 - r: route
 - s: sign state (with or without the sign)

Action selection

- ϵ-greedy selection ($\epsilon = 0.1$)

Update evaluation functions

- update values $C_{r,s}$, $K_{r,s}$ in the functions with travel time by hill-climbing method
Experiments

Settings

• Evaluation function (Information) of PV
 1. C
 2. $C + L$

• Traffic Control Center
 – Management policy
 1. only penalty
 2. penalty and sign
 – probability p: 0.2–1.0
Result \((C)\)

![Graph showing the result of average travel time of emergency vehicles in seconds (UE) and cost of penalties per hour (SO) with and without signs. The graph illustrates a correlation between the two variables, with a trend line indicating the relationship. The x-axis represents the cost of penalties per hour, ranging from 0 to 45,000, while the y-axis represents the average travel time in seconds, ranging from 160 to 300. The graph includes data points for 'No Sign' and 'With Sign' scenarios.]
Result \((C, L_r)\)
Conclusion

- Soft-restriction approach is better than traditional approach.
 - Travel time of EVs is able to be control by the cost.
 - Travel time of PVs is able to be shorter.

- In the case where PVs use the num of vehicles on each lane,
 - Traffic control center can reduce the cost by using sign.
Future Work

• Experiments with different information sets of PV
 – recent travel time of PVs
 – average speed of vehicles on each route

• Validation with other networks
 – network types
 – actual road network