Constructing Sparse Realizations of Finite-Precision Digital Controllers Based on a Closed-Loop Stability Related Measure

Jun Wu†, Sheng Chen‡, Gang Li§ and Jian Chu†

† National Laboratory of Industrial Control Technology
Institute of Advanced Process Control
Zhejiang University, Hangzhou, 310027, P. R. China
‡ Department of Electronics and Computer Science
University of Southampton, Highfield
Southampton SO17 1BJ, U.K.
§ School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore

Abstract

We present a study of the finite word length (FWL) implementation for digital controller structures with sparseness consideration. A new closed-loop stability related measure is derived, taking into account the number of trivial elements in a controller realization. A practical design procedure is presented, which first obtains a controller realization that maximizes a lower bound of the proposed measure, and then uses a stepwise algorithm to make the realization sparse. Simulation results show that the proposed design procedure yields computationally efficient controller realizations with enhanced FWL closed-loop stability performance.

Index Terms — digital controller, finite word length, closed-loop stability, sparse realization, optimization, stepwise algorithm, real-time computation.

1 Introduction

It is well-known that a designed stable control system may achieve a lower than predicted performance or even become unstable when the control law is implemented with a finite-precision device due to FWL effects. In real-time applications where computational efficiency is critical, a digital controller implemented in fixed-point arithmetic has certain advantages. With a fixed-point processor, the detrimental FWL effects are markedly increased due to a reduced precision. As the FWL effects on the closed-loop stability depend on the controller realization structure,
many studies have addressed the problem of finding “optimal” realizations of finite-precision controller structures based on various FWL stability measures [1]-[7]. Except [5], these design methods usually yield fully parameterized controller structures, that is, they generally do not produce sparse controller realizations.

It is highly desirable that a controller realization has a sparse structure, containing many trivial elements of 0, 1 or -1. This is particularly important for real-time applications with high-order controllers, as it will achieve better computational efficiency. It is known that canonical controller realizations have sparse structures but may not have the required FWL stability robustness. This poses a complex problem of finding sparse controller realizations with good FWL closed-loop stability characteristics. In [8], sparseness consideration is imposed as constraints in optimizing a FWL stability measure using an adaptive simulated annealing (ASA) algorithm. This approach is difficult to extend to high-order controllers due to high computational requirements. In our previous works [9],[10], a design procedure has been given to obtain sparse controller realizations based on a FWL pole-sensitivity stability related measure.

In this study we derive a new improved FWL closed-loop stability related measure, which takes into account the number of trivial elements in a controller realization. The true optimal realization that maximizes this measure will possess an optimal trade-off between robustness to FWL errors and sparse structure. However, it is not known how to obtain such an optimal realization. We extend an iterative algorithm [2],[11] to search for a suboptimal solution. Specifically, we first obtain the realization that maximizes a lower bound of the proposed stability measure. This can easily be done [5],[7] but the resulting realization is not sparse. A steepest ascent algorithm is then applied to make the realization sparse without sacrificing FWL stability robustness too much. The proposed method has some advantages over the existing methods [5],[9],[10]: it is less conservative in estimating the robustness of the FWL closed-loop stability and the computational complexity is considerably reduced. Numerical examples are used to test this design procedure and to compare its performance with the previous method [9],[10].

2 A stability related measure with sparseness considerations

Consider the discrete-time closed-loop control system, consisting of a linear time-invariant plant $P(z)$ and a digital controller $C(z)$. The plant model $P(z)$ is assumed to be strictly proper with a state-space description (A_P,B_P,C_P), where $A_P \in \mathbb{R}^{m \times m}$, $B_P \in \mathbb{R}^{m \times l}$ and $C_P \in \mathbb{R}^{q \times m}$.
Let \((A_C, B_C, C_C, D_C)\) be a state-space description of the controller \(C(z)\), with \(A_C \in \mathbb{R}^{n \times n}\),
\(B_C \in \mathbb{R}^{n \times q}\), \(C_C \in \mathbb{R}^{l \times n}\) and \(D_C \in \mathbb{R}^{l \times q}\). A linear system with a given transfer function matrix
has an infinite number of state-space descriptions. In fact, if \((A_C^0, B_C^0, C_C^0, D_C^0)\) is a state-space
description of \(C(z)\), all the state-space descriptions of \(C(z)\) form a realization set

\[
S_C \triangleq \{ (A_C, B_C, C_C, D_C) | A_C = T^{-1} A_C^0 T, B_C = T^{-1} B_C^0, C_C = C_C^0, D_C = D_C^0 \}
\]

(1)

where \(T \in \mathbb{R}^{n \times n}\) is any non-singular matrix. Denote \(N \triangleq (d + n)(q + n)\) and

\[
X \triangleq \begin{bmatrix} D_C & C_C \\ B_C & A_C \end{bmatrix} = \begin{bmatrix} x_1 & x_{l+n+1} & \cdots & x_{N-l-n+1} \\ x_2 & x_{l+n+2} & \cdots & x_{N-l-n+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{l+n} & x_{2n} & \cdots & x_N \end{bmatrix}
\]

(2)

The stability of the closed-loop control system depends on the eigenvalues of the closed-loop system matrix

\[
\overline{\lambda}(X) = \begin{bmatrix} A_P + B_P D_C C_P & B_P C_C \\ B_C C_P & A_C \end{bmatrix}
\]

\[
= \begin{bmatrix} A_P & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} B_P & 0 \\ 0 & I_n \end{bmatrix} X \begin{bmatrix} C_P & 0 \\ 0 & I_n \end{bmatrix} \triangleq M_0 + M_1 X M_2
\]

(3)

where \(0\) denotes the zero matrix of appropriate dimension and \(I_n\) the \(n \times n\) identity matrix.
All the different realizations \(X\) in \(S_C\) have exactly the same set of closed-loop poles if they
are implemented with infinite precision. Since the closed-loop system has been designed to be
stable, all the eigenvalues \(\lambda_i(\overline{\lambda}(X))\), \(1 \leq i \leq m + n\), are within the unit disk.

When a \(X\) is implemented with a fixed-point processor, it is perturbed to \(X + \Delta X\) due to
the FWL effect. Each element of \(\Delta X\) is bounded by \(\pm \varepsilon / 2\), that is,

\[
\mu(\Delta X) \triangleq \max_{j \in \{1, \ldots, N\}} |\Delta x_j| \leq \varepsilon / 2
\]

(4)

For a fixed-point processor of \(B_s\) bits, let \(B_i = B_i + B_f\), where \(2^{B_i}\) is a “normalization” factor
to make the absolute value of each element of \(2^{B_i} X\) no larger than 1. Thus, \(B_i\) are bits required
for the integer part of a number and \(B_f\) are bits used to implement the fractional part of a number. It can easily be seen that \(\varepsilon = 2^{-B_f}\). With the perturbation \(\Delta X\), \(\lambda_i(\overline{\lambda}(X))\) is moved to
\(\lambda_i(\overline{\lambda}(X + \Delta X))\). If an eigenvalue of \(\overline{\lambda}(X + \Delta X)\) is outside the open unit disk, the closed-loop
ystem, designed to be stable, becomes unstable with \(B_s\)-bit implemented \(X\). It is therefore
critical to choose a realization \(X\) that has a good closed-loop stability robustness to the FWL
effect. Another important consideration is the sparseness of \(X\). Those elements of \(X\), which
have values 0, 1 and -1, are called trivial parameters. A trivial parameter requires no operations
in the fixed-point implementation and does not cause any computational error at all. Thus \(\Delta x_j = 0 \) when \(x_j = 0,1 \) or \(-1\). In order to take into account this property of trivial controller parameters, we define an indicator function as

\[
\delta(x) = \begin{cases}
0, & \text{if } x = 0,1 \text{ or } -1 \\
1, & \text{otherwise}
\end{cases}
\]

(5)

We emphasize that in this paper a trivial element is referred to as 0, 1 or \(-1\). A natural extension could also consider “semi-trivial” elements of \(\mathbf{X} \), which are a power of two, \(x = 2^{-i} \), such as \(x = 0.5, 0.25 \) and so on. These elements can be realized with simple shift operations in the fixed-point implementation. The design of such kind of sparse controller realizations are however much more difficult (see for example [12]).

We are now ready to propose a new FWL closed-loop stability related measure which takes into account the sparseness of a controller realization. When the FWL error \(\Delta \mathbf{X} \) is small,

\[
\Delta \left| \lambda_i \right| \approx \left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X} + \Delta \mathbf{X})) \right| - \left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X})) \right| = \sum_{j=1}^{N} \left| \frac{\partial \lambda_i}{\partial x_j} \right| \Delta x_j \delta(x_j), \quad \forall i \in \{1, \cdots, m + n\}
\]

(6)

where \(\frac{\partial \lambda_i}{\partial x_j} \) is evaluated at \(\mathbf{X} \). It follows from the Cauchy inequality that

\[
\left| \Delta \left| \lambda_i \right| \right| \leq \sqrt{N_s \sum_{j=1}^{N} \left(\frac{\partial \lambda_i}{\partial x_j} \right)^2 \delta(x_j)^2} \leq \mu(\Delta \mathbf{X}) \sqrt{N_s \sum_{j=1}^{N} \left(\frac{\partial \lambda_i}{\partial x_j} \right)^2 \delta(x_j) \delta(x_j)}, \quad \forall i
\]

(7)

where \(N_s \) is the number of the nontrivial elements in \(\mathbf{X} \). This leads to the following FWL closed-loop stability related measure

\[
\mu_1(\mathbf{X}) = \min_{i \in \{1, \cdots, m + n\}} \frac{1 - \left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X} + \Delta \mathbf{X})) \right|}{\sqrt{N_s \sum_{j=1}^{N} \left(\frac{\partial \lambda_i}{\partial x_j} \right)^2 \delta(x_j) \delta(x_j)}}
\]

(8)

The rationale of this measure is obvious. If the norm of the FWL error \(\Delta \mathbf{X} \) is smaller than \(\mu_1(\mathbf{X}) \), i.e. \(\mu(\Delta \mathbf{X}) < \mu_1(\mathbf{X}) \), it follows from (7) and (8) that \(\left| \Delta \left| \lambda_i \right| \right| < 1 - \left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X})) \right| \). Therefore

\[
\left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X} + \Delta \mathbf{X})) \right| \leq \left| \Delta \left| \lambda_i \right| \right| + \left| \lambda_i(\overline{\mathbf{A}}(\mathbf{X})) \right| < 1
\]

(9)

which means that the closed-loop system remains stable under the FWL error \(\Delta \mathbf{X} \). In other words, for a given controller realization \(\mathbf{X} \), the closed-loop system can tolerate those FWL perturbations \(\Delta \mathbf{X} \) whose norms, as defined in (4), are less than \(\mu_1(\mathbf{X}) \). The larger \(\mu_1(\mathbf{X}) \) is, the larger FWL errors the closed-loop system can tolerate. Hence, \(\mu_1(\mathbf{X}) \) is a stability related measure describing the FWL closed-loop stability performance of a controller realization \(\mathbf{X} \). This measure clearly considers the number of trivial parameters in a controller realization. We can now discuss how to compute \(\mu_1(\mathbf{X}) \). First we have the following lemma from [5],[7].
Lemma 1 Let $\mathbf{\bar{A}(X)} = \mathbf{M}_0 + \mathbf{M}_1 \mathbf{X} \mathbf{M}_2$ given in (3) be diagonalisable, and have eigenvalues $\{\lambda_i(\mathbf{\bar{A}(X)}))\}$. Denote p_i a right eigenvector of $\mathbf{\bar{A}(X)}$ corresponding to the eigenvalue λ_i. Define $\mathbf{M}_p = \begin{bmatrix} p_1 & p_2 & \cdots & p_{m+n} \end{bmatrix}$ and $\mathbf{M}_y = \begin{bmatrix} y_1 & y_2 & \cdots & y_{m+n} \end{bmatrix} = \mathbf{M}_p^{-H}$, where H is the transpose and conjugate operator and y_i the reciprocal left eigenvector related to λ_i. Then

$$\frac{\partial \lambda_i}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial \lambda_1}{\partial x_1} & \cdots & \frac{\partial \lambda_{m+n+1}}{\partial x_{m+n+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \lambda_1}{\partial x_{m+n}} & \cdots & \frac{\partial \lambda_{m+n+1}}{\partial x_{m+n+1}} \end{bmatrix} = \mathbf{M}_y^T \mathbf{p}_i^T \mathbf{M}_2^T$$

(10)

where the superscript $*$ denotes the conjugate operation and T the transpose operator.

Next, we have the following result.

Lemma 2 For \mathbf{X}, $\mathbf{\bar{A}(X)}$ and $\{\lambda_i\}$ as defined in lemma 1,

$$\frac{\partial |\lambda_i|}{\partial \mathbf{X}} = \frac{1}{|\lambda_i|} \text{Re} \left[\lambda_i \frac{\partial \lambda_i}{\partial \mathbf{X}} \right]$$

(11)

where Re$[\cdot]$ denotes the real part.

Proof. Noting $|\lambda_i| = \sqrt{\lambda_i^* \lambda_i}$ leads to

$$\frac{\partial |\lambda_i|}{\partial \mathbf{X}} = \frac{1}{2 |\lambda_i|} \left(\frac{\partial \lambda_i^*}{\partial \mathbf{X}} \lambda_i + \lambda_i^* \frac{\partial \lambda_i}{\partial \mathbf{X}} \right) = \frac{1}{2 |\lambda_i|} \left(\left(\frac{\partial \lambda_i}{\partial \mathbf{X}} \right)^* \lambda_i + \lambda_i^* \frac{\partial \lambda_i}{\partial \mathbf{X}} \right) = \frac{1}{|\lambda_i|} \text{Re} \left[\lambda_i \frac{\partial \lambda_i}{\partial \mathbf{X}} \right]$$

(12)

Combining lemma 1 with lemma 2 results in the following proposition, which shows that, given a \mathbf{X}, the value of $\mu_1(\mathbf{X})$ can easily be calculated.

Proposition 1 For \mathbf{X}, \mathbf{M}_1, \mathbf{M}_2, $\mathbf{\bar{A}(X)}$, $\{\lambda_i\}$, \mathbf{p}_i and \mathbf{y}_i as defined in lemma 1,

$$\frac{\partial |\lambda_i|}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial |\lambda_1|}{\partial x_1} & \cdots & \frac{\partial |\lambda_{m+n+1}|}{\partial x_{m+n+1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial |\lambda_1|}{\partial x_{m+n}} & \cdots & \frac{\partial |\lambda_{m+n+1}|}{\partial x_{m+n+1}} \end{bmatrix} = \frac{1}{|\lambda_i|} \text{M}_y^T \text{Re} \left[\lambda_i \mathbf{y}_i^T \mathbf{p}_i^T \right] \mathbf{M}_2^T$$

(13)

It should be emphasized that the FWL stability related measure (8) is different with the one used in [5],[9],[10], which is given by

$$\mu_2(\mathbf{X}) = \min_{i \in \{1, \ldots, m+n\}} \frac{1 - |\lambda_i(\mathbf{\bar{A}(X)})|}{\sqrt{\text{N} \sum_{j=1}^\text{N} \delta(x_j) \left| \frac{\partial \lambda_i}{\partial x_j} \right|^2}}$$

(14)

The key difference between $\mu_1(\mathbf{X})$ and $\mu_2(\mathbf{X})$ is that the former considers the sensitivity of $|\lambda_i(\mathbf{\bar{A}(X)})|$ while the latter considers the sensitivity of $\lambda_i(\mathbf{\bar{A}(X)})$. It is well-known that the
stability of a linear discrete-time system depends only on the moduli of its eigenvalues. As \(\mu_2(\mathbf{X}) \) includes the unnecessary eigenvalue arguments in consideration, it is generally conservative in comparison with \(\mu_1(\mathbf{X}) \). This can be verified strictly. From lemma 2,

\[
\left| \frac{\partial \lambda_i(\mathbf{X}(\mathbf{X}))}{\partial x_j} \right| \leq \left| \frac{\lambda_i(\mathbf{X}(\mathbf{X})) \frac{\partial \lambda_i(\mathbf{X}(\mathbf{X}))}{\partial x_j}}{\lambda_i(\mathbf{X}(\mathbf{X}))} \right| = \left| \frac{\partial \lambda_i(\mathbf{X}(\mathbf{X}))}{\partial x_j} \right| \tag{15}
\]

which means that \(\mu_2(\mathbf{X}) \leq \mu_1(\mathbf{X}) \). The result given in [7] has confirmed that by considering the sensitivity of eigenvalue moduli rather than the sensitivity of eigenvalues, a better FWL closed-loop stability related measure can be obtained. It is worth pointing out that the proposed measure \(\mu_1(\mathbf{X}) \) also has considerable computational advantages over the existing \(\mu_2(\mathbf{X}) \). This is because \(\frac{\partial \lambda_i}{\partial \mathbf{x}} \) is real-valued while \(\frac{\partial \lambda_i}{\partial \mathbf{x}} \) is complex-valued. Thus the optimisation process and sparse transformation procedure, discussed in the next section, require much less computation than the previous approach [5], [9], [10], unless all the system eigenvalues are real-valued in which case \(\mu_1(\mathbf{X}) \) and \(\mu_2(\mathbf{X}) \) become identical.

3 Suboptimal controller realizations with sparse structures

The optimal sparse controller realization with a maximum tolerance to FWL perturbation in principle is the solution of the following optimization problem:

\[
v \triangleq \max_{\mathbf{X} \in \mathcal{X}_C} \mu_1(\mathbf{X}) \tag{16}
\]

However, it is difficult to solve for the above optimization problem because \(\mu_1(\mathbf{X}) \) includes \(\delta(x_j) \) and is not a continuous function with respect to controller parameters \(x_j \). To get around this difficulty, we consider a lower bound of \(\mu_1(\mathbf{X}) \) defined by

\[
\underline{\mu}_1(\mathbf{X}) = \min_{i \in \{1, \ldots, m+n\}} \frac{1 - \lambda_i(\mathbf{X}(\mathbf{X}))}{\sqrt{N \sum_{j=1}^{n} \left[\frac{\partial \lambda_i}{\partial x_j} \right]^2}} \tag{17}
\]

Obviously, \(\mu_1(\mathbf{X}) \leq \mu_1(\mathbf{X}) \) and \(\underline{\mu}_1(\mathbf{X}) \) is a continuous function of controller parameters. It is relatively easy to optimize \(\underline{\mu}_1(\mathbf{X}) \) (e.g. [7]). Let the “optimal” controller realization \(\mathbf{X}_{\text{opt}} \) be the solution of the optimization problem

\[
\omega \triangleq \max_{\mathbf{X} \in \mathcal{X}_C} \underline{\mu}_1(\mathbf{X}) \tag{18}
\]

Notice that \(\mathbf{X}_{\text{opt}} \) is generally not the optimal solution of (16) and does not have a sparse structure. However, it can readily be attempted by the following optimization procedure.
3.1 Optimization of the lower-bound measure

Assume that an initial controller realization has been obtained by some design procedure and is denoted as X_0. According to (1)–(3), a similarity transformation of X_0 by T is

$$X = X(T) = \begin{bmatrix} I_l & 0 \\ 0 & T^{-1} \end{bmatrix} X_0 \begin{bmatrix} I_q & 0 \\ 0 & T \end{bmatrix}$$ \hspace{1cm} (19)

where $\det(T) \neq 0$. The closed-loop system matrix for the realization X is

$$\overline{A}(X) = \begin{bmatrix} I_m & 0 \\ 0 & T^{-1} \end{bmatrix} \overline{A}(X_0) \begin{bmatrix} I_m & 0 \\ 0 & T^{-T} \end{bmatrix}$$ \hspace{1cm} (20)

Obviously, $\overline{A}(X)$ has the same set of eigenvalues as $\overline{A}(X_0)$, denoted as $\{\lambda_i^0\}$. From (20), applying proposition 1 results in

$$\frac{\partial |\lambda_i|}{\partial X} \bigg|_{X(T)} = \begin{bmatrix} I_l & 0 \\ 0 & T^T \end{bmatrix} \frac{\partial |\lambda_i|}{\partial X} \bigg|_{X_0} \begin{bmatrix} I_q & 0 \\ 0 & T^{-T} \end{bmatrix}$$ \hspace{1cm} (21)

For a complex-valued matrix $M \in \mathbb{C}^{(l+n) \times (q+n)}$ with elements m_{sk}, denote the Frobenius norm

$$\|M\|_F \triangleq \sqrt{\sum_{i=1}^{l+n} \sum_{k=1}^{q+n} m_{sk}^* m_{sk}}$$ \hspace{1cm} (22)

Then the lower-bound measure (17) can be rewritten as

$$\mu_\infty(X) = \min_{i \in \{1, \ldots, m+n\}} \frac{1 - |\lambda_i^0|}{\sqrt{N} \| \begin{bmatrix} I_l & 0 \\ 0 & T^T \end{bmatrix} \Phi_i \begin{bmatrix} I_q & 0 \\ 0 & T^{-T} \end{bmatrix} \|_F}$$ \hspace{1cm} (23)

where

$$\Phi_i \triangleq \frac{\frac{\partial |\lambda_i|}{\partial X} \bigg|_{X_0}}{1 - |\lambda_i^0|}$$ \hspace{1cm} (24)

are fixed matrices that are independent of T. Thus, if we introduce the cost function

$$f(T) = \min_{i \in \{1, \ldots, m+n\}} \frac{1}{\sqrt{N} \| \begin{bmatrix} I_l & 0 \\ 0 & T^T \end{bmatrix} \Phi_i \begin{bmatrix} I_q & 0 \\ 0 & T^{-T} \end{bmatrix} \|_F} = \mu_\infty(X)$$ \hspace{1cm} (25)

the optimal similarity transformation T_{opt} can be obtained by solving for the following unconstrained optimization problem

$$\omega = \max_{T \in \mathbb{R}^{n \times n}} f(T)$$ \hspace{1cm} (26)

with a measure of monitoring the singular values of T to make sure that $\det(T) \neq 0$ [13]. The unconstrained optimization problem (26) can be solved, for example, using the simplex search
algorithm [14], the simulated annealing algorithm [15], the ASA algorithm [16] or the genetic algorithm [17]. In our previous study, we have found that the ASA is very efficient in solving for this kind of optimization problems [7]. With \(T_{\text{opt}} \), the corresponding optimal realization \(X_{\text{opt}} \) that is the solution of (18) can readily be computed.

3.2 Stepwise transformation algorithm for sparse realizations

As the optimal sparse realization that maximizes \(\mu_1 \) is difficult if not impossible to obtain, we will search for a suboptimal solution of (16). More precisely, we will search for a realization that is sparse with a large enough value of \(\mu_1 \). Since \(X_{\text{opt}} \) maximizes \(\underline{\mu_1} \) and \(\underline{\mu_1} \) is a lower-bound of \(\mu_1 \), \(X_{\text{opt}} \) will produce a satisfactory large value of \(\mu_1 \), although it usually contains no trivial elements. We can make \(X_{\text{opt}} \) sparse by changing one nontrivial element of \(X_{\text{opt}} \) into a trivial one at a step, under the constraint that the value of \(\mu_1 \) does not reduce too much. This process will produce a sparse realization \(X_{\text{spa}} \) with a satisfactory value of \(\underline{\mu_1} \). Clearly such a \(X_{\text{spa}} \) is not a true optimal solution of (16). Notice that, even though \(\mu_1(X_{\text{spa}}) \leq \mu_1(X_{\text{opt}}) \), it is possible that \(\mu_1(X_{\text{spa}}) \geq \mu_1(X_{\text{opt}}) \). In other words, \(X_{\text{spa}} \) may actually achieve better FWL stability performance than \(X_{\text{opt}} \). The design procedure is similar to the one used in [9],[10]. We now describe the detailed stepwise procedure for obtaining \(X_{\text{spa}} \).

Step 1: Set \(\tau \) to a very small positive real number (e.g. \(10^{-5} \)). The transformation matrix \(T \in \mathcal{R}^{n \times n} \) is initially set to \(T_{\text{opt}} \) so that \(X(T) = X_{\text{opt}} \).

Step 2: Find out all the trivial elements \(\{\eta_1, \ldots, \eta_r\} \) in \(X(T) \) (a parameter is considered to be trivial if its distance to 0, 1 or -1 is less than a tolerance value, say \(10^{-8} \)). Denote \(\xi \) the nontrivial element in \(X(T) \) that is the nearest to 0, 1 or -1.

Step 3: Choose \(S \in \mathcal{R}^{n \times n} \) such that

i) \(\mu_1(X(T + \tau S)) \) is close to \(\mu_1(X(T)) \).

ii) \(\{\eta_1, \ldots, \eta_r\} \) in \(X(T) \) remain unchanged in \(X(T + \tau S) \).

iii) \(\xi \) in \(X(T) \) is changed as nearer as possible to 0, 1 or -1 in \(X(T + \tau S) \).

iv) \(\|S\|_F = 1 \).

If \(S \) does not exist, \(T_{\text{spa}} = T \) and terminate the algorithm.

Step 4: \(T = T + \tau S \). If \(\xi \) in \(X(T) \) is nontrivial, go to step 3. If \(\xi \) becomes trivial, go to step 2.
The key of the above algorithm is **Step 3** which guarantees that \(X(T_{\text{opt}}) \) has good performance as measured by \(\mu_1 \) and contains many trivial parameters. We now discuss how to obtain \(S \). Denote \(\text{Vec}(\cdot) \) the column stacking operator. With a very small \(\tau \), condition i) means that

\[
\left(\text{Vec} \left(\frac{d\mu_1}{dT} \right) \right)^T \text{Vec}(S) = 0 \tag{27}
\]

and condition ii) means that

\[
\begin{align*}
\left(\text{Vec} \left(\frac{d\mu_n}{dT} \right) \right)^T \text{Vec}(S) &= 0 \\
\vdots \\
\left(\text{Vec} \left(\frac{d\mu_{t-1}}{dT} \right) \right)^T \text{Vec}(S) &= 0
\end{align*} \tag{28}
\]

Denote the matrix

\[
E \triangleq \begin{bmatrix}
\left(\text{Vec} \left(\frac{d\mu_1}{dT} \right) \right)^T \\
\left(\text{Vec} \left(\frac{d\mu_n}{dT} \right) \right)^T \\
\vdots \\
\left(\text{Vec} \left(\frac{d\mu_{t-1}}{dT} \right) \right)^T
\end{bmatrix} \in \mathcal{R}^{(r+1) \times n^2} \tag{29}
\]

\(\text{Vec}(S) \) must belong to the null space \(\mathcal{N}(E) \) of \(E \). If \(\mathcal{N}(E) \) is empty, \(\text{Vec}(S) \) does not exist and the algorithm is terminated. If \(\mathcal{N}(E) \) is not empty, it must have basis \(\{b_1, \ldots, b_t\} \), assuming that the dimension of \(\mathcal{N}(E) \) is \(t \). Condition iii) requires moving \(\xi \) to its desired value (0, 1 or -1) as fast as possible, and we should choose \(\text{Vec}(S) \) as the orthogonal projection of \(\text{Vec} \left(\frac{d\xi}{dT} \right) \) onto \(\mathcal{N}(E) \). Noting condition iv), we can compute \(\text{Vec}(S) \) as follows:

\[
a_i = b_i^T \text{Vec} \left(\frac{d\xi}{dT} \right) \in \mathcal{R}, \quad \forall i \in \{1, \ldots, t\} \tag{30}
\]

\[
\mathbf{v} = \sum_{i=1}^{t} a_i b_i \in \mathcal{R}^{n^2} \tag{31}
\]

\[
\text{Vec}(S) = \pm \frac{\mathbf{v}}{\sqrt{\mathbf{v}^T \mathbf{v}}} \in \mathcal{R}^{n^2} \tag{32}
\]

The sign in (32) is chosen in the following way. If \(\xi \) is larger than its nearest desired value, the minus sign is taken; otherwise, the plus sign is used.

In the above algorithm, the derivatives \(\frac{d\mu_1}{dT}, \frac{d\xi}{dT}, \frac{d\mu_n}{dT}, \ldots, \frac{d\mu_{t-1}}{dT} \) are needed. For calculating these required derivatives, the following well-known fact is useful. Given any element \(y_{ij} \) in a nonsingular \(Y \in \mathcal{R}^{n \times n} \) with \(i \in \{1, \ldots, n\} \) and \(j \in \{1, \ldots, n\} \),

\[
\frac{\partial Y}{\partial y_{ij}} = e_i e_j^T \quad \text{and} \quad \frac{\partial Y^{-1}}{\partial y_{ij}} = -Y^{-1} e_i e_j^T Y^{-1} \tag{33}
\]

where \(e_i \) denotes the \(i \)th coordinate vector. In (19), define

\[
U_1 = \begin{bmatrix} I_1 & 0 \\ 0 & T \end{bmatrix} \quad \text{and} \quad U_2 = \begin{bmatrix} I_q & 0 \\ 0 & T \end{bmatrix} \tag{34}
\]
For any element \(x_{ks} \) in \(X = U_1^{-1}X_0U_2 \), where \(k \in \{1, \cdots, l + n\} \) and \(s \in \{1, \cdots, q + n\} \), and any \(t_{ij} \) in \(T \), where \(i \in \{1, \cdots, n\} \) and \(j \in \{1, \cdots, n\} \),

\[
\frac{\partial x_{ks}}{\partial t_{ij}} = e_k^T U_1^{-1} X_0 U_2 e_s + e_k^T U_1^{-1} X_0 \frac{\partial U_2}{\partial t_{ij}} e_s \\
= -e_k^T U_1^{-1} e_{l+i} e_{l+j}^T U_1^{-1} X_0 U_2 e_s + e_k^T U_1^{-1} X_0 e_{q+i} e_{q+j}^T e_s \\
= -e_k^T U_1^{-1} e_{l+i} e_{l+j}^T X e_s + e_k^T U_1^{-1} X_0 e_{q+i} e_{q+j}^T e_s
\]

(35)

That is,

\[
\frac{d x_{ks}}{d T} = \begin{bmatrix}
 e_k^T U_1^{-1} \\
 \vdots \\
 e_k^T U_1^{-1}
\end{bmatrix}
\begin{bmatrix}
 X_0 e_{q+1} e_{q+1}^T \\
 \vdots \\
 X_0 e_{q+n} e_{q+n}^T
\end{bmatrix}
- \begin{bmatrix}
 e_{l+i} e_{l+i}^T X \\
 \vdots \\
 e_{l+i} e_{l+i}^T X
\end{bmatrix}
\begin{bmatrix}
 e_s \\
 \vdots \\
 e_s
\end{bmatrix}
\]

(36)

Thus, we can readily calculate \(\frac{d x_{k_1}}{d T}, \frac{d x_{k_2}}{d T}, \cdots, \frac{d x_{k_m}}{d T} \). Next, define

\[
i_0 = \arg \min_{i \in \{1, \cdots, m+n\}} \frac{1}{\sqrt{N} \| \Phi_i [\begin{bmatrix}
 I_q & 0 \\
 0 & T^T
\end{bmatrix} \Phi_i]^T [\begin{bmatrix}
 I_q & 0 \\
 0 & T^T
\end{bmatrix} \Phi_i]^T \|_F}
\]

(37)

Similar to the derivation of \(\frac{d x_{k_1}}{d T} \), for any element \(w_{ks} \) in \(W = U_1^T \Phi_i U_2^{-T} \), where \(k \in \{1, \cdots, l + n\} \) and \(s \in \{1, \cdots, q + n\} \), we have

\[
\frac{d w_{ks}}{d T} = \begin{bmatrix}
 e_k^T \\
 \vdots \\
 e_k^T
\end{bmatrix}
\begin{bmatrix}
 e_{l+i} e_{l+i}^T \Phi_i \\
 \vdots \\
 e_{l+i} e_{l+i}^T \Phi_i
\end{bmatrix}
- \begin{bmatrix}
 We_{q+1} e_{q+1}^T \\
 \vdots \\
 We_{q+n} e_{q+n}^T
\end{bmatrix}
\begin{bmatrix}
 e_s \\
 \vdots \\
 e_s
\end{bmatrix}
\]

(38)

Since

\[
\mu_1 = \frac{1}{\sqrt{N} \| \sum_{k=1}^{l+n} \sum_{s=1}^{q+n} w_{ks}^* w_{ks} \|_F}
\]

(39)

We can calculate

\[
\frac{d \mu_1}{d T} = -\frac{1}{\sqrt{N} \| W \|_F} \text{Re} \left[\sum_{k=1}^{l+n} \sum_{s=1}^{q+n} w_{ks}^* \frac{d w_{ks}}{d T} \right]
\]

(40)

Before presenting some simulation results, we point out that given a FWL pole-sensitivity measure, such as \(\mu_1(X) \), an estimated minimum bit length for guaranteeing closed-loop stability can be estimated using [6],[7]

\[
\hat{B}_{s,\min} = B_i + \text{Int} \left[-\log_2(\mu_1(X)) \right] - 1
\]

(41)

where the integer \(\text{Int}[x] \geq x \).
4 Numerical examples

We present two design examples to show how our approach can be used efficiently to search for sparse controller realizations with satisfactory FWL closed-loop stability performance.

Example 1. This was a single-input single-output fluid power speed control system studied in [18],[19]. The plant model was in the continuous-time form and a continuous-time H_{∞} optimal controller was designed in [18]. In this study, we obtained a discrete-time plant $P(z)$ and a discrete-time controller $C(z)$ by sampling the continuous-time plant and H_{∞} controller using a sampling rate of 2 kHz. The discrete-time plant $P(z)$ was given by

$$A_P = \begin{bmatrix} 9.9988e-01 & 1.9432e-05 & 5.9320e-05 & -6.2286e-05 \\ -4.9631e-07 & 2.3577e-02 & 2.3709e-05 & 2.3672e-05 \\ -1.5151e-03 & 2.3709e-02 & 2.3751e-05 & 2.3898e-05 \\ 1.5908e-03 & 2.3672e-02 & 2.3898e-05 & 2.3667e-05 \end{bmatrix},$$

$$B_P = \begin{bmatrix} 3.0504e-03 \\ -1.2373e-02 \\ -1.2375e-02 \\ -8.8703e-02 \end{bmatrix},$$

$$C_P = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$

The initial realization of the controller $C(z)$ given in a controllable canonical form was

$$X_0 = \begin{bmatrix} -8.0843e-04 & -1.6112e-03 & -1.5998e-03 & -1.5885e-03 & -1.5773e-03 \\ 1 & 0 & 0 & 0 & -3.0717e-01 \\ 0 & 1 & 0 & 0 & 1.9869e+00 \\ 0 & 0 & 1 & 0 & -3.9816e+00 \\ 0 & 0 & 0 & 1 & 3.3255e+00 \end{bmatrix}.$$

Notice that the controllable canonical form was very sparse, containing only 9 non-trivial elements. The closed-loop transition matrix $\chi(X_0)$ was then formed using (3), from which the eigenvalues and the corresponding eigenvectors of the ideal (infinite-precision) closed-loop system were computed. The closed-loop eigenvalues were:

$$\begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_5 \\ \lambda_6 \\ \lambda_7 \\ \lambda_8 \end{bmatrix} = \begin{bmatrix} 9.9956e-01 & +j 2.5674e-04 \\ 9.9956e-01 & -j 2.5674e-04 \\ 9.9333e-01 \\ 9.9333e-01 \\ 3.3333e-01 \\ 2.3625e-02 \\ 2.7819e-19 \\ -3.8735e-09 \end{bmatrix}.$$

The optimisation problem (26) was constructed, and the ASA algorithm [16] obtained the following solution

$$T_{\text{opt}} = \begin{bmatrix} 2.3644e+07 & 2.0268e+06 & 1.0498e+08 & -4.7194e+06 \\ -1.1839e+08 & -9.9623e+06 & -5.2570e+08 & 2.3636e+07 \\ 1.6622e+08 & 1.3872e+07 & 7.3801e+08 & -3.3191e+07 \\ -7.1475e+07 & -5.9364e+06 & -3.1729e+08 & 1.4274e+07 \end{bmatrix}.$$
The corresponding controller realization, which maximizes the lower-bound measure \(\mu_1 \), is

\[
X_{\text{opt}} = \begin{bmatrix}
2.7580e+00 & 1.0010e+00 & -1.4054e-02 & 1.0924e-03 & -8.9552e-03 \\
-2.2776e-04 & -5.8175e-02 & 3.3649e-01 & 7.5457e-02 & 1.3962e-03 \\
-2.5200e-04 & 1.0668e-03 & 1.6778e-02 & 9.9766e-01 & 1.5423e-03 \\
8.1179e-03 & 5.1502e-03 & 3.1311e-02 & -3.8681e-03 & 9.9031e-01
\end{bmatrix}
\]

The stepwise transformation algorithm was then applied to make \(X_{\text{opt}} \) sparse, which yielded the following similarity transformation matrix and corresponding controller realization

\[
T_{\text{spa}} = \begin{bmatrix}
-1.7499e+05 & -4.5848e+04 & 2.1159e+08 & 3.0140e+02 \\
8.1616e+05 & 1.8611e+06 & -1.0592e+09 & -1.2931e+03 \\
-1.0789e+06 & -2.3503e+06 & 1.4869e+09 & 1.8162e+03 \\
4.3753e+05 & 9.4770e+05 & -6.3921e+08 & -7.8105e+02
\end{bmatrix}
\]

\[
X_{\text{spa}} = \begin{bmatrix}
-8.0843e-04 & 1.6372e-02 & -5.4228e-04 & -1.8348e-03 & -6.9866e-02 \\
0 & 1 & 0 & 0 & -1.4073e-03 \\
0 & -6.8678e-02 & 3.3285e-01 & 4.2230e-01 & 5.8895e-04 \\
0 & -5.6623e-06 & -7.6002e-04 & 1 & 0 \\
\end{bmatrix}
\]

As the controller order is not large for this example, the computational effort in solving the optimization problem (26) is relatively low. In a typical workstation network, \(X_{\text{opt}} \) was obtained within a few minutes. The complexity of the sparse procedure obviously depends on how sparse one wants to force a realization to be. Typically a few hundreds of iterations are sufficient. For this example, \(X_{\text{spa}} \) was obtained from \(X_{\text{opt}} \) within a few minutes.

Table 1 compares the FWL closed-loop stability performance and the number of non-trivial elements for the three controller realizations \(X_0, X_{\text{opt}} \) and \(X_{\text{spa}} \), respectively. For a comparison purpose, the values of the previous stability related measure\(\mu_2 \) and its lower-bound \(\mu_\alpha \) together with their corresponding estimated minimum bit lengths \([9],[10] \) are also given in Table 1 for the three realizations. We also exploited the true minimum bit length that guaranteed closed-loop stability for a controller realization \(\mathbf{X} \) using the following computer simulation. Starting with a large enough bit length, e.g. \(B_s = 100 \), we rounded the controller \(\mathbf{X} \) to \(B_s \) bits and checked the stability of the closed-loop system, i.e. observing whether the closed-loop poles were within the open unit disk. Reduced \(B_s \) by 1 and repeated the process until there appeared to be closed-loop instability at \(B_u \) bits. Then \(B_{s_{\text{min}}} = B_u + 1 \). The values of \(B_{s_{\text{min}}} \) for the three realizations are given in Table 1. Notice that for \(B_s \geq B_{s_{\text{min}}} \), the \(B_s \)-bit implemented controller will always guarantee closed-loop stability. However, there may exist some \(B_s < B_{s_{\text{min}}} \), which regains closed-loop stability. For example, for the initial realization \(X_0, B_u = 32 \), i.e. when the bit length is smaller than 33, the closed-loop becomes unstable. At \(B_s = 16 \) or 15, the closed-loop becomes stable again. With \(B_s < 15 \) instability is observed again.
For this example, the canonical realization \(X_0 \) is the most sparse with only 9 non-trivial parameters, but its FWL closed-loop stability related measure \(\mu_1(X_0) \) is very poor. The realization \(X_{opt} \) has a much better FWL stability robustness as indicated by \(\mu_1(X_{opt}) \), but its all 25 elements are non-trivial. The realization \(X_{spa} \) has the largest \(\mu_1(X_{spa}) \) and, moreover, it is sparse with only 16 non-trivial parameters. This example only has a pair of complex eigenvalues. Even so, the results shown in Table 1 indicate that the proposed \(\mu_1 \) (\(\underline{\mu}_1 \) respectively) is less conservative in estimating the robustness of FWL closed-loop stability than the previous measure \(\mu_2 \) (\(\underline{\mu}_2 \) respectively)\(^1\). We also computed the unit impulse response of the closed-loop control system when the controllers were the infinite-precision implemented \(X_0 \) and 16-bit implemented three different controller realizations. Notice that any realization \(X \in S_C \) implemented in infinite precision will achieve the exact performance of the infinite-precision implemented \(X_0 \), which is the designed controller performance. For this reason, the the infinite-precision implemented \(X_0 \) is referred to as the ideal controller realization \(X_{ideal} \). Fig. 1 compares the unit impulse response of the plant output \(y(k) \) for the ideal controller \(X_{ideal} \) with those of the 16-bit implemented \(X_0 \), \(X_{opt} \) and \(X_{spa} \). It can be seen that the performance of the 16-bit implemented \(X_{spa} \) is almost identical to that of the 16-bit implemented \(X_{opt} \), which is very close to the ideal performance.

Example 2. This was a dual wrist assembly which was a prototype telerobotic system used in micro-surgery experiments [20]. This dual wrist assembly is a two-input \((l = 2) \) two-output \((q = 2) \) system with a plant order \(m = 4 \), and the digital controller designed using \(H_\infty \) method had an order of \(n = 10 \) [20]. The total number of controller parameters was \(N = 144 \). The \(H_\infty \) controller designed in [20], which was fully parameterised with \(N_s = N \), was used as the initial controller realization \(X_0 \), and the realization \(X_{opt} \) that maximized the lower-bound measure \(\underline{\mu}_1 \) was obtained using the ASA algorithm. This realization was then made sparse using the algorithm given in subsection 3.2 to yield \(X_{spa} \). As the controller was a high-order one, the computational cost was much higher, compared with the previous example, and the entire design process was completed in 50 minutes in a typical workstation network. Table 2 summarizes the performance of these three different controller realizations. It can be seen that the proposed measure \(\mu_1 \) (\(\underline{\mu}_1 \) respectively) yielded less conservative results in estimating the robustness of FWL closed-loop stability than the previous measure \(\mu_2 \) (\(\underline{\mu}_2 \) respectively).

Fig. 2 compares the first-input to first-output unit impulse response of the closed-loop system

\(^1\)If \(\arg \mu_1 = \arg \mu_2 = \lambda_0 \) \((\arg \underline{\mu}_1 = \arg \underline{\mu}_2 \) respectively) and \(\lambda_0 \) is real valued, then obviously \(\mu_1 = \mu_2 \) (\(\underline{\mu}_1 = \underline{\mu}_2 \) respectively).
obtained using the ideal controller X_{ideal} with those obtained using the 20-bit implemented controller realizations X_{opt} and X_{spa}. The 20-bit implemented X_0 is unstable and therefore is not shown. It can be seen that the performance of the 20-bit implemented X_{opt} is close to the ideal performance, and the 20-bit implemented X_{spa}, although deviating from the ideal one, achieves a stable closed-loop performance. Fig. 3 compares the second-input to second-output ideal unit impulse response of the closed-loop system with those of the 24-bit implemented X_0, X_{opt} and X_{spa}. It can be seen that the performance of the 24-bit implemented X_{spa} closely matches that of the 24-bit implemented X_{opt}, which itself is almost identical to the ideal performance. Deviation from the ideal performance by the 24-bit implemented X_0 can clearly be seen from Fig. 3. This example clearly demonstrates the effectiveness of the proposed design procedure. The sparse controller realization X_{spa} obtained has almost half of its parameters being trivial, and it has a much improved FWL closed-loop stability robustness over the initial controller realization X_0.

5 Conclusions

We have studied FWL implementation of digital controller structures with sparseness consideration. A new FWL closed-loop stability related measure has been derived, which takes into account the number of trivial parameters in a controller realization. It has been shown that this new measure yields a more accurate estimate for the robustness of FWL closed-loop stability. A practical procedure has been presented to obtain sparse controller realizations with satisfactory FWL closed-loop stability characteristics. Two examples demonstrate that the proposed design procedure yields computationally efficient controller structures suitable for FWL implementation in real-time applications.

Acknowledgements

J. Wu and S. Chen wish to thank the support of the U.K. Royal Society under a KC Wong fellowship (RL/ART/CN/XFI/KCW/11949).
References

<table>
<thead>
<tr>
<th>realization</th>
<th>X₀</th>
<th>X_{opt}</th>
<th>X_{opta}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_s</td>
<td>9</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₁</td>
<td>2.604531e-12</td>
<td>6.862889e-05</td>
<td>6.108122e-05</td>
</tr>
<tr>
<td>\mu₁</td>
<td>39</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₂</td>
<td>4.417941e-12</td>
<td>5.500982e-05</td>
<td>6.108052e-05</td>
</tr>
<tr>
<td>\mu₂</td>
<td>40</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₂</td>
<td>39</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>̂B_{s,\text{min}}</td>
<td>33</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1: Performance comparison of the three different controller realizations for Example 1.

<table>
<thead>
<tr>
<th>realization</th>
<th>X₀</th>
<th>X_{opt}</th>
<th>X_{opta}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_s</td>
<td>144</td>
<td>144</td>
<td>75</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₁</td>
<td>4.306085e-04</td>
<td>3.224443e-03</td>
<td>1.279414e-03</td>
</tr>
<tr>
<td>\mu₁</td>
<td>27</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₂</td>
<td>1.173382e-04</td>
<td>1.057405e-03</td>
<td>4.393420e-04</td>
</tr>
<tr>
<td>\mu₂</td>
<td>29</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>̂B_{s,\text{min}} \text{ based on } \mu₂</td>
<td>1.173382e-04</td>
<td>1.057405e-03</td>
<td>9.249032e-04</td>
</tr>
<tr>
<td>̂B_{s,\text{min}}</td>
<td>22</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Performance comparison of the three different controller realizations for Example 2.
Figure 1: Comparison of unit impulse response of the infinite-precision controller implementation \(X_{\text{ideal}} \) with those of the three 16-bit implemented controller realizations \(X_0, X_{\text{opt}} \) and \(X_{\text{spa}} \) for Example 1.
Figure 2: Comparison of first-input first-output unit impulse response of the infinite-precision controller implementation X_{ideal} with those of the 20-bit implemented controller realizations X_{opt} and X_{spa} for Example 2. The 20-bit implemented X_0 is unstable and hence is not shown here.
Figure 3: Comparison of second-input second-output unit impulse response of the infinite-precision controller implementation X_{ideal} with those of the 24-bit implemented controller realizations X_0, X_{opt} and X_{spa} for Example 2.